
NASA Technical Memorandum 107596

User's Guide to the Reliability Estimation System
Testbed (REST)

David M. Nicol
Daniel L. Palumbo
Adam Rifldn

June 1992

National Aeronautics and

Space Administration

Langley Research Center
Hampton, VA 23665

(,IASA-TH-1975_6)

T_ ,<,;L _Af'.ILI TY

USER'S (]!J|,)t TC;

ESTIM&TIu.N SY <:TT:'I

(NASA) <+I :)
_Jr_c la ,;

Contents

2

Introduction to REST 5

1.1 Introduction 5

The

2.1

'2.2

2.3

2.4

2.5

2.6

2.7

REST Modeling Language (RML) 7

Overview of RML 7

MODULE Definitions 8

2.2.1 STATE Variable Declarations 8

2.2.2 RATE Variable Declarations 10

2.2.3 RELATION Variable Declarations l0

2.2.4 Event Declarations 11

2.2.5 (;ODE Segment 14

STATIC Section 15

GLOBAL Section 15

INIT Section 16

STATE Variable Access 18

REST Message-Passing 18

3 Extended Examples 21

3.1 Example 1: A Non-Reconfiguring Quad 21

3.2 Example 2: A Reconfiguring Quad 23

3.3 Example 3: A Reconfiguring Quad with Voter 24

3.4 Example 4: An Redundant I/O Interface 27

3.5 Example 5: A Quad Processor with I/O Interfaces 28

4 XREST 31

4.1 Building REST and xrest.. 31

4.2 Files required for compilation 31

4.3 How to compile the program 32

4.4 Bow to run the program 32

2 CONTENTS

4.5

1.6

4.7

.1.8

4.9

4.10

4.11

4.12

4.1;I

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

About REST tool 33

Define(1 constra,ints 33

The text editor window 34

REST messages 35

Specifying frames 35

Add a new module 36

Add to a model 36

4.11.1 Add a function declaration 37

4,11.2 Add a variable declaration 37

4.11.3 Add a, Connect call 38

4.11.4 Add a GetState call 38

Add a section 38

Stuff selected text 39

Goto in the text editor window 39

Set up a watch window 39

Open a term window 40

Run a REST model 40

4.17.1 Debugging 43

Module library 48

4.18.1 Insert fl'om module library 48

4.18.2 Save to module library 48

Load a REST model 48

Save a REST model 48

Clear the template 49

Quit REST tool 49

Program Enhancements 49

List, of REST messages 49

5 Listings 55

List of Figures

2.1 Example of REST Module declaration 9

3.1 Block Diagram of Quad with Voter 25

3.2 Block Diagram of Quad with Voter and I/O Interface 30

3

4 LIST OF FIGURES

Chapter 1

Introduction to REST

1.1 Introduction

The Reliability Estimation System Testbed (REST) is a software system designed to sup-

port the hardware reliability an',dysis of complex fault-tolerant computer systems. REST is

presently comprised of a system modeling language and translator, an X-Windows front-end

to support, the design of systems using tile language, a model debugger, and model execu-

tion engines implemented both on serial workstations, eald on the Intel iPSC multiprocessor.

REST is used by first defining a system of interest in the description language. The model

can then be fully analyzed using either tile serial or parallel execution engines. REST output

includes upper and lower bounds on the probability of encountering a failure condition, and

summaries of the conditions under which those failures occur.

This documentation contains three basic parts. The first is a description of RML, the

language used to model systems in REST. The second is a detailed example of modeling in

RML, with comparisons with equivalent models in ASSIST[l]. The third is a description of

the X-Windows based user interface to REST.

6 CHAPTER 1. INTRODUCTION TO REST

Chapter 2

The REST Modeling Language

(RML)

2.1 Overview of RML

In this chapter we describe the language, RML, used by the REST to model a system.

RML centers around the notion of a "module". A module type is an abstraction able to

describe a range of entities, fi'om simple hardware components up to complex organizations

of such components. A module type definition in RML plays much the same role as a

class definition in an object oriented language, or a struct definition in C--it serves to

describe the properties of an entity that may be replicated many times throughout the

system. The first step in defiuing a system in RML is to describe all the module types to be

found in the system. Such declarations include state vas'iables, rules for detecting a system

failure condition, rules for modifying the system state, and rules for pruning system state

modification. Module variables, i.e., instances of module types, are then declared. Next, the

interconnection paths between module variables are described, and finally, the initial states

of the module variables are defined. The model analysis portion of REST takes the system

so described and repeatedly transforms the system state in accordance with rules given with

the module type definition.

The REST translator maps all state variables implicit in the declaration of module vari-

ables onto a global state vector. However, an RML expression of a module and its behavior

is done in terms of state variables with only local scope. Thus, it is the job of the REST

run-time system to transform references to local state variables into references to the global

state vector. This is accomplished by requiring the user to call REST run-time routines

GetState(hrg) and PutState(Arg,Value) in order to read or write local variable Avg.

These routines use the run-time system's knowledge of which module variable is making the

8 CHAPTER 2. THE REST MODELING LANGUAGE (RML)

call, and translate the reference into the correct, global state vector element representing the

module's own Arg value. The REST run-time system is also responsible for all analysis, and

sequencing of routines declared in the RML modules.

A legal module t)'l_' d_4i,M, ion is given in Figure 2.1. The example is somewhat artificial.

in order to illustrate ill one place several different RML features. Development of a more

complete exa.mp]e is found in Chapter 3. Later sections will outline the specific meanings of

various pazts of the definition, nevertheless, the basic description can be understood without.

the details. The e×ample describes a hardware component that interfaces with two hardware

"chamlels". The interfa.cc may fail, then repair, as may the channels. The interface notifies

another portion of the system whenever it fails or repairs; a channel notifies the interface

whenever the channel fails or repairs. The interface keeps track of the operational status of

its two channels. The entire system is considered to have failed if it. is ever the case that

,tny module of type InterfaceChanne:l. and both of its channels are simultaneously in failed

states.

Each of the RML portions will now be described in turn, beginning with module type

definitions. Following that, we describe the RML translator, and REST run-time system.

2.2 MODULE Definitions

A module type definition always begins with the keyword MODULE, followed by a mod-

ule type "identifier" (as in most programming languages, an alphanumeric character string

beginning with a letter) and a '{.' A module type identifier corresponds to a. user-defined

type name in traditional programming languages. A module type definition has three parts:

variable declarations, event declarations, and action code. The module type definition is

ter,ninated with a } that matches the leading { . The variable declaration section holds

declarations of STATE variables, RATE variables, and RELATION variables. Its various

components will be discussed at length, beginning with STATE variable declarations.

2.2.1 STATE Variable Declarations

A STATE variable declaration has the form

STATE Sta%eVariableName;

where StateVariableNtme is an identifier. A STATE variable is implicitly an integer, and

has the same storage size as an ordinary C integer variable would have on .the target ex-

ecution engine. One-dimensional arrays may also be defined as STATE variables. Several

STATE declarations may be placed on one line. For example, the following is a legal STATE

declaration

2.2. MODULE DEFINITIONS 9

].

MODULE InterfaceChannel (

STATE OpState; // bit j set -> Ch[j] is dead, j-O,l

RATE ICFailureRate,ICRepairRate;

KELATION Channel CH[2] : RecvCHMsg();

KELATION GENERIC Sys ;

// Constants FAILED _ 4, ALIVE = 8

// are declared in the STATIC section of REST model

// In C ! is logical negation, " is bit-wise exclusive OR

// I is bit-wise OR , R is bit-wise AND

// II is logical OR , RR is logical AND

// The interface fails

FailEvt:IF(!(GetState(OpState) R FAILED)) TKANTO

{ int OS - GetState(OpState);

PutState(OpState,OSIFailed);

SendYalue(Sys,FAILED);

} BY ICFailureRate;

// The interface repairs itself

RepairEvt: IF(GetState(OpState) R FAILED) TRANTO

{ inr OS - GetState(OpSrate);

PutSrate(OpState, OS k'FAILED);

SendValue(Sys,ALIVE);

} BY FAST ICRepairRate;

// The system is in a failure state

DeathEvt: DEATHIF ((GetSta_e(OpS_ate) R FAILED) Ra

GetS_ate(CH[O].Status) -- FAILED _R

GetState(CH[1].Sta_us) .5 FAILED);

CODE { void RecvCHMsg(msg,who)

int *msg,who;

{int OS - GetState(OpState);

// create bitmask describing caller

int WhoBit - 1 << who;

if(.msE--FAILED) // record failure

PutState(OpS_ate, OSlWhoBi_);

else // clear failed bi_

PutState(OpStat, OS R "WhoBit); }

} // end of CODE

// end of MODULE

Figure 2.1: Example of REST Module declaration

10 CHAPTER 2. THE ltES'T MODELING LANG[rAGE (RML)

STATE Status, Mode, InputPorts[4] ;

Here STATE variables Status and Mode are declared, as is allarray InputPorts having four

elements. As in C, array indexing begins with 0. Multiple lines of STATE declarations are

permitted.

2.2.2 RATE Variable Declarations

A RATE va.rial)le declaration gives a syml)olic name to a transition rate, and is given with the

intention of that rate being referenced later in the action declaration part. A RATE variable

is implicitly a floating point number; unlike STATE variables, arrays of RATE variables

are not permitted. The following is a legal declaration of RATE variables Fai:l.Rate and

RecoveryRate

RATE FailRate, RecoveryRate;

Values for RATE variables are not declared within the module definition. Like STATE

variable declarations, a module may contain a number of lines of RATE variable declarations.

It is also possible to declare a RATE function, e.g.,

RATE FailRate();

In this case FailRate() is a floating-point valued function whose body is given in the

module's action description part. The effect is to use the value returned by the function in

place of a static value bound to an ordinary RATE variable. A RATE function declaration

must appear on its own line.

2.2.3 RELATION Variable Declarations

A RELATION variable is a reference (or pointer) to another module with which a module

of the type being defined may be "connected" via the Connect () call (see Section§2:5). In

Figure 2.1 the declaration

RELATION Channel CH[2] : RecvCHMsg();

means that each module of type InterfaceChannel may be logically related to two modules

of type Channel. Within the scope of the InterfaceChannel definition, array name CH

refers to these two modules. Examples of this are seen in the arguments Of the SendValue()

function calls. It is important to remember that these declarations refer to structural prop-

erties that all instaa)ces of modules having type InterfaceChannel share. Instantiation,

initialization, aa_d interconnection of module variables are made elsewhere in a REST model.

2.2. MODULE DEFINITIONS 11

A module is able to communicate via message-passing with its RELATIONS. The SendValue ()

calls are examples of all InterfaceChannea module sending messages (in this case, single in-

tegers) to a RELATION. Function RecvClft.lsg() within the RELATION declaration specifies

that whenever the modules bound to Ctt [0] or CH[13 send a message to a InterfaceChmanel

module, recognition and receipt of the n_essage is accomplished by execution of routine

l_ecvCHMsg(), expressed within the InterfaeeChannel definition. An extended discussion

on message-passing selnantics is found in !i2.7. Declaration of a message-handling routine

may be omitted when messages are not expected from the RELATION. A run-time error

will occur in the event tha.l a message is sent to module through this RELATION.

When declaring a RELATION variable the variable's module type (e.g., Channel) may

be omitted. In this case the keyword CENERIC is used in place of the module type; see, for

instance, the declara.tion of RELATION variable $ys in Figure 2.1. RML permits a module

to read the STATE variables of a RELATION, provided the RELATION's type is given. An

examl)le of this in Figure 2.1 is the function call GetState(CH[O]. Status). GetState() is

a REST run-time routine used to access STATE variables; the syntax CH [0]. Status means

"STATE variable Status from the module connected a_s tit [0]'. Since STATE variables are

declared only in the contexi, of MODULE declarations, it is feasible to access CH [0]. Status

only if we know that modules connected to OH[0] must have a STATE variable named

Status. However, there is also an advantage to declaring GENERIC relations when a module

definition is to be included in a library, or when modules of a given type are connected to

different types of modules in one system. Since the type of module bound to a GENERIC

RELATION is unknown and not necessarily constant, REST does not permit attempts to

read STATE variables of such relations.

2.2.4 Event Declarations

REST's notion of an event is derived from the ASSIST declarations of DEATHIF, TRANTO,

PRUNEIF, and ASSERT declarations [1]. Each of these ASSIST declarations can be viewed

as an assertion "If Conditim, is true, then undertake Action.". In the case of all these

declarations, Condition is some logical condition of the system state vector; for DEATHIF

the Action is "record current state vector as a death-state", for PRUNEIF the Action is

"prune further modification of the state vector", for TRANTO the Action is modification

of the state vector in accordance with rules specified following the TRANTO statement. In

RML we add the EVENTIF event, type. EVENTIF is an event where a logical condition

of the system state vector is specified, but the only action taken is to record that the event

occurred. RML's EVENTIF is just the converse of ASSIST's ASSERT statement, which

specifies a logical condition and notifies the user whenever the condition is not satisfied.

In RML we view each of these as specific event types. RML then permits the user

12 CHAPTER 2. TItE REST MODELING LANGUAGE (RML)

to label event declaxations, e.g. labels FailEvt, RepairEvt, and DeathEvt in Figure 2.1.

Event labels play an important role in identifying event declarations in RML translator error

messages, run-time event logs, and in the REST debugger.

The DEATHIF declaration in Figure 2.1 asserts that a system failure condition occurs

whenever the Status variables of" both CH RELATIONS connected to an InterfaceChannel

module are equal to the constant FAILED at. the same time as the module's 0pStatus also

reflect failure. It. is important to remember that this DEATHIF statement applies to all

modules of type InterfaceCharmel. An operational system fails whenever this condition

becomes true for any InterfaceChannel module.

RML permits the, syntax

DEATHIF DeathCondFunction();

where DeathCondFunction() is an integer valued C function which is declared later in the

module's CODE section. This function is called to evaluate whether the system state is in a

specific failure condition, in which case a non-zero value is returned. Value zero is returned

to indicate that the failure condition does not exist in the system state vector. Any function

so used must be expressed in the CODE segment of the module being defined. RML permits

the function to be declared with arguments, e.g.,

DEATHIF DeathCondFunction(1,GetState(OpState));

is legal. Of course, the user is responsible for making sure that the arguments match in type

and number with those in the function declaration.

All RML event declarations may express Condition either as a logical C expression within

matching parenthesis, or as a call to an integer function. However, there is a very important

difference between the two statements

DEATHIF Dea%hCondFunc%ion();

and

DEATHIF (DeathCondFunction());

The first implicitly asserts that within the CODE segment of the MODULE declaration

there will be an integer function called DeathCondFtmction(). Presence of the parenthesis

in the second form is a signal to the translator to treat the text within the parenthesis

as a C expression. Any function that appears in this expression is not declared in the

module's CODE section. Instead, it may be declared in the STATIC section of the REST

model (see §2.3). The utility of the second form lies in the fact that functions in STATIC

may be referenced from within any MODULE definition in the model. The reason for the

2.2. MODULE DEFINITIONS 13

difference in these two forms lies in the way the RML translator works. When the first form

is recognized, the translator modifies the name of the function by prepending the module

type name, in order to make the function name unique. This is necessary because the

scope of a function declared inside of a CODE section is limited to thai, section. Therefore,

two different MODULE definitions can use the same name for two semantically different

functions. Any function expressed within the CODE segment of a module also has its name

modified. Ultimately, the first form of the DEATHIF is transformed into a C statement such

&s

if(InterfaceChannel_DeathCondFunction()) {

When processing the second form, the RML translator does not prepend the module type

to function cMlsit encounters;the second formis translated into a C statement such as

if(DeathCondYunction()) {

It is also permissible to define a macro in the STATIC section, and use it with the second

form. For example, if STATIC contains the macro definitions

#define EQS(a,b) (a-=b)

#define SET(a,b) (a&b)

then the DEATHIF statement in Figure 2.1 could be replaced by

DEATHIF(SET(GetState(0pState) ,FAILED) /t/t

EQS (GetState (CH [0]. Status),FAILED) _t&

EQS(Ge%State(CH[2] .Status),FAILED));

As the STATIC section is intended for C statements common to all modules, calls to REST

run-time routines (such as GetState) may not be placed there, as the arguments to such

have scope limited to a module's definition.

The PRUNEIF and EVENTIF event syntax is identical to the DEATHIF syntax. A

recognized PRUNEIF condition terminates further transformation of the current system

state. A recognized EVENTIF declaration does nothing except call a log routine which

records the occurrence of the event.

System state transitions are also events, of the form

IF Condition Tt_I¢I'0 Action BY Rate;

As illustrated by Figure 2.1, Action may be any C compound statement[2]. A compound

statement begins with a '{' after which it may declare variables with scope local only to the

compound statement, followed by a sequence of statements and terminated by a '}'. Observe

14 CHAPTER 2. THE REST MODELING LANGUAGE (RML)

that variable I:lS is defined within the Action portions of both the FailEvt and RepairEvt

events in Figure 2.1. Function calls within a complex C statement must either be to REST

run-time routines, or to fimctions defined in the model's STATIC section. They specifically

may not be to functions declared within the CODE section. Alternatively, Action may be a

call to a C function (of type void), e.g.,

IF(GetState(Status) == ALIVE) TP_NTO FailMe() BY FailRate;

Similar to condition fimctions, FailMe() may include arguments. Also like condition func-

tions, this form of the statement implicitly asserts that there is a function named FailMe()

declared in the module's (',ODE section.

The rate variable following the keyword BY must be declared in the module as a RATE

variable. A declared rate function may also be used, e.g., we may replace FailRate with

a function call FailRate(). Like the other function calls, this one is permitted to have

arguments (although the arguments must not be declared in the RATE variable declaration

itself). This is particularly useful for implementing state-dependent transition rates. As in

ASSIST, the keyword FAST signifies an exponentially distributed recovery transition.

2.2.5 CODE Segment

As we have seen, C functions can be specified to handle message receipt from RELATIONS.

to compute whether an event's Condition is satisfied, to implement effects of a satisfied

TRANTO Condition, and to return a transition rate. All functions so declared within a

MODULE definition must be expressed in the CODE segment of the MODULE definition.

These routines may call REST run-time functions such as GetState, PutState, SendMsg,

SendYalue.

Routines in the CODE section must follow the following rules.

1. Condition calculation routines must return an integer value. Routines PutState(),

GetNewState(), SendMsg(), and SendValue() may not be called.

2. Action routines must be of type void.

3. Rate calculation routines must return a floating point number. They may not call

PutState (), SendMsg (), or SendValue ().

4. Message handling routines must be of type void. Furthermore, the first argument (if

any) must be a character pointer. A second argument, if any, must be an integer.

The first argument passed to a message-handling routine is a pointer to the message.

The second argument is the array index of the calling RELATION. Both of these facts are

2.3. STATIC SECTION 15

illustrated in Figure 2.1, where msg points to the integer-valued message, and variable who

is 0 or 1, depending on whether CH[O] or CH[1] sends the message.

It. is possible to put commonly used subroutines in the CODE segment, but care must

be taken to remember how the RML transla.tor works. Ever), function found declared in

a (',ODE segment has its name modified by pre-pending the module type name and an

underscore. Functions that are called from functions in a CODE segment do not have their

names modified. So if a subroutine is decla.red in the (',ODE segment, e.g., routine Foobar(),

and that subroutine is then referenced by using its modified name, e.g., IC..FooBar().

At present there are no safety mechanisms in REST to prevent a function in one mod-

ule's CODE segment from using this subroutine trick to call a function declared in another

module's CODE segment. However, this is not recommended programming practice!

2.3 STATIC Section

A STATIC section optionally follows the set of all MODULE declarations. It is declared

with the keyword STATIC followed by a bracketed section. This section is designed to hold

any and all C language functions, macros, struct definitions, and data structures used to

support the analysis of the REST module. Anything declared in the STATIC section can

be accessed by any module code. We have already seen the example of STATIC containing

macros which are used in event conditional statements. A good use of STATIC is to create

and store complex data-structures that do not change as the model is analyzed. For example,

a data structure may be defined which describes the static topology of a network. Once it

is initialized (within the IN1T section, to be described), any REST routine may read the

data structures. For that matter, any REST routine can write the data structures, but. this

is not recommended unless the user is highly knowledgeable about his model and the way

REST analyzes it. Due to the assumed invariant nature of the data structures declared in

the STATIC section, a variable declared in STATIC may not play the role properly reserved

for STATE variables.

STATIC may not contain any reference to local variables in modules, or to REST run-

time routines GetState, PutState, GetNewState, SendMsg, or SendValue.

2.4 GLOBAL Section

Instances of module variables are declared in the GLOBAL section. This section is introduced

by the keyword GLOBAL, and like STATIC is delimited by left and right braces. GLOBAL

consists of a sequence of declarations of the form

ModuleType VariableName;

16 CHAPTER 2. THE REST MODELING LANGUAGE (RML)

or

ModuleType VariableName[Integer] ;

This declares there is a ,_,odule variable named VariableName, of type ModuleType, which

nmst be defined earlier in the REST module. An array of variables is declared using the

second form; Integer must be a positive integer--symbolic names via #define are not

permitted.

2.5 INIT Section

The INIT section contains code to create the communication topology between declared

module variables, and to initia.lize the state variables of the modules. The INIT section is,

without question, the hardest part of a REST module to follow, and debug. One of the great

benefits of a graphical front-end to REST will be the automated generation of INIT section

statements. Like other REST sections, the INIT section is declared using a keyword INIT,

and is delimited by left and right braces. The INIT section has all the properties of the body

of a C subroutine, which it does, in fact, become in the C translation of RML. The braces

delimiting INIT's scope are the braces delimiting the subroutine. Thus temporary values,

macros, and so forth can be defined at the beginning of the INIT section, just as done in a C

routine. The remainder of the section uses a C framework to call REST routines Connect (),

view(), Set(), and Rate to initialize the model. Each of these is now described in turn.

A Connect () call establishes a correspondence between two module variables. It makes

real the connection implied by a RELATION variable declaration. The call has the form

Connect(ModuleVarl.RelationVarl, ModuleVar2.RelationVar2);

Here. ModuleVarl specifies some specific module variable declared in the GLOBAL section.

If the variable is a member of a declared array, then the array index must be given as well,

e.g, FTPChannel[S]. Character string RelationVarl must be the name of a RELATION

variable declared in the definition of RoduleVarl's module type. If that relation was declared

as an array, then RelationVarl must include a specific array index. These same rules apply

to ModuleYar2 and RelationVar2.

The Connect () call asserts that ModuleVar2 is the instantiation of the module type ref-

erenced as RELATION RelationVarl in module Modulel, and that conversely HoduleVarl

is the instantiation of the module type referenced as RELATION RelationVaz2 in module

Module2. It gives substance to the RELATION abstraction.

It can be useful to use C expressions, functions, and loop constructs to express variable

or rela.tion indices. For example, the loop

2.5. INIT SECTION 17

for(idx=O; idx<lO; idx++)

Connect (FTP [(int) (pow(2, idx))7.17].Ch, FTPC. Boss [16.idx/137]) ;

is perfectly legitimate, provided that, all indices so computed are within range of the declared

arrays (this is checked at run-time), and "duplicate connections" are not made (which is also

checked).

It is sometimes useful to endow one module with the ability to "view" another's STATE

variables with no intention of message comnmnication to or from that module. To support

this situation REST provides a routine Viev(), whose arguments are identical to those for

Connect (), save that no RelationYar2 is specified. The effect of call

View (ModuleVarl. RelationVarl, ModuleVar2) ;

is to enable ModuleVarl to access ModuleVar2's state variables via RELATION variable

RelationVarl. The connection goes in only one direction. The definition Of ModuleVar2's

module type does not need to declare a RELATION variable with ModuleVarl's type. For

all practical purposes, ModuleVar2 is ignorant of the fact that ModuleVarl has access to it.

The Set () call is used to initialize state variables. It has the form

Set (ModuleVar. StateVar, expression) ;

where ModuleVarl specifies a module variable, StateVar specifies a single state value (pos-

sibly indexed), and expression is a C expression that evaluates to an integer. For example,

the following C fragment is a convoluted way to initialize the STATE variable 0pState of

module IC [3] having type InterfaceChannel (recall Figure 2.1) with value 0.

Zero = 0;

0nes = -I ;

Set(IC[3].0pState, (Zero[0nes) k Zero);

The Rate() call is used to initialize RATE variables declared within MODULE declara-

tions. It has the form

Rate (ModuleType. RateYariable, float) ;

where ModuleType is the name of a declared MODULE type (not variable), and RateVariable

is the name of a RATE variable declared by that MODULE. float is a floating point number,

used as the transition rate by any TRANTO statement using variable RateVariable. It is

important to remember that all module variables of type NoduleType use a common value

of RateYariable. We intend to permit variable-by-variable declarations of rate variables in

later versions of REST.

As with the other REST initialization routines, any module or relation index can be given

as a C expression which evaluates to an integer.

18 CHAPTER 2. THE REST MODELING LANGUAGE (RML)

2.6 STATE Variable Access

REST provides routines GetState(), GetNewState(), and PutState() for reading, and

writing the system state vector, respectively. GetState() and GetNewState() both have a

single argument that uniquely identifies one state value. That argument may describe one

of a module's own state values, e.g., GetState(0pState) in Figure 2.1. Alternatively it

may describe a state variable for one of its relations, e.g., GetState (CI-I [0]. Status), also in

Figure 2.1. Of course, in the latter case the relation must be identified. In either case, any

index may be expressed as a C expression, which will be evaluated at run-time.

A call Put St at e (St at eVar, Value) identifies one of a module's own state variables, and

the value to give it. Value may be any C expression that does not include a call to other

REST runtime routines. Observe that while a module can read its relation's state variables,

it is unable to write them.

The difference between GetState() and GetNewStatQ() lies in which state value is re-

turned. GetState() always returns a value from the "base _ state vector, the one whose

elements are tested in IF events for transition conditions. GetNewState() can be useful in

the processing associated with the Action portion of an IF event. Some portion of that pro-

cessing may modify a state variable via a PutState() call. Later processing--within that

same Action processing--may want to access the modified variable instead of the "original _

variable. GetNewState() provides that function.

2.7 REST Message-Passing

As we have seen, an RML model is very modular; expression of transition rules and recog-

nition of failure conditions are all a_complished by referencing local variables. In addition,

RML follows an object-oriented philosophy by using explicit message-passing to express in-

formation transfer between modules. The correctness of an RML model depends on the

model developer's understanding of the semantics of message-passing. This section directly

addresses message-paasing syntax and semantics.

Module variables may communicate with each other during Action processing via message

passing. A typical example is the Action processing associated with a component failure.

The module variable representing the component executes its Action code, which may send a

message to all modules in which the component appears as a relation. The message handling

routines in recipient modules are executed; in that execution, additional messages may be

sent and received. To use message passing properly, it is important to understand exactly

how message passing is implemented. Suppose SendMsg(RelVar,Msg) is called from within

some Action code, with the recipient relation specified. SendMsg() looks up the module

2. 7. REST MESSAGE-PASSING 19

and relation to which RelVar has been Connected. Part of Connect processing is to store a

pointer to the function declared to handle messages from the sender. This pointer is accessed,

and the function is called. Thus, a call to SendMsg() essentially is a call to a subroutine

to handle tile message sent. Control is not, returned to the calling code until all processing

associated with handling that message has completed. Remember, however, that a message

handler can itself call SendMsg(); this arrangement uses the C run-time stack to manage

multiple message invocations---we simply transform message passing into subroutine calls.

REST actually provides two routines for sending messages. SendMsg () is the more general

of the two. A SendMsg() ca.l] has two arguments. The first identifies the RELATION variable

to whom the message will be sent, the second is a pointer (of type (char *)) to a message.

The programmer is responsible for managing the space used to store the message, and for

building the message itself. The space may be acquired from malloc(), or may be part of the

calling routine's local space. The space should not come from data structures declared in the

GLOBAL section. It is good programming practice to have the routine that calls mallo¢()

also call free(). SendValue() is similar, except that the second argument is an integer

value. When applicable, this routine relieves the programmer from memory management.

SendValue() itself allocates space, copies in the value, and passes a pointer to that value to

the appropriate message receipt function.

20 CHAPTER 2. THE REST MODELING LANGUAGE (RML)

Chapter 3

Extended Examples

This chapter presents a series of examples given in both RML and ASSIST. These examples

illustrate both the use of RML, as well as its relative advantages and disadvantages with

respect to ASSIST.

3.1 Example 1: A Non-Reconfiguring Quad

The non-reconfiguring quad is a simple system consisting of 4 identical processing com-

ponents which cooperate through majority voting to achieve greater reliability. Since the

system does not disable channels on its voters (reconfigure), any two processor failures have

the potential to defeat the majority vote. The ASSIST model for this system is shown in

Listing 1 and the RML model in Listings 2a-b, found in Chapter 5.

The ASSIST Model: In the ASSIST model, an ARRAYof 4 processing elements, P, is

declared in the SPA CE statement. The processing elements have binary state values where

0 represents GOOD (healthy or working) and 1 represents BAD (failed or not working). The

4 processors are initialized to GOOD in the START statement. System failure is declared

in the DEA THIF statement to occur when more than 1 processor has failed (more than one

element of the processor array, P, is set to 1 so that the sum over the array is greater than

1). The system state matrix is described by a FOR loop which declares that, if a processor

is GOOD, it can fail to BAD by rate PFall. The constant PFAIL is given a value of 1.0E-4

in the ASSIST preamble.

The RML Model: RML was designed to support a graphical model description envi-

ronment where a user defines the reliability model as he constructs a system block diagram.

To construct the block diagram, components are defined and interconnected. Component

definition is thought of as the instantiation of a particular type of component. In this exam-

ple we would have four instantiations of one type of processor component. To support this

21

22 CHAPTER 3. EXTENDED EXAMPLES

paradigm, RML allows the user to define MODULEs which describe component types. The

components themselves are declared in a GLOBAL section of the model and interconnected

in the INIT section (see Listing 2b).

A module contains 5 kinds of entries: STATE variables, RATE variables, RELATION

declarations, EVENT declarations and CODE. A module can have several STATE and RATE

variables. The Processor module (Listing 2a), however, contains one STATE variable,

Procstate, and one RATE variable, ProcFail. Following these is one TRANTO event.

The TRANTO event in RML is identical in meaning to the ASSIST TRANTO statement

with the exception that functions can be called in the condition, effect and rate fields of

the TRANTO. The Processor TRANTO event uses the simple functions ProcGood() and

FailEfi'ect () to illustrate this capability. The functions are declared in the CODE section

of the module and are written using standard C language syntax. Notice in the function

definitions that the STATE variable ProcState is accessed through functions PutState()

and GetState(). The modeler uses the TRANTO events (rules) and C code functions to

define the behavior of the component. In the Processor module, this is simply, as before,

that ifa Processor isGOOD itwillFAIL with a rate ProcFail.

RML models typicallycontain a System module which contains events describingsystem

failure(DEATHIF events). A DEATHIF event identifiesthe stateor setof statesin which a

subsystem isconsidered to be no longer functioningcorrectly.The DEATHIF expression is

then written in terms of the subsystem's STATE variables.To do this,the System module

must have access to the subsystem's internalSTATE.

Following thislineof thought, the System module in Listing2a begins with a RELATION

statement declaring that the System module can communicate with 4 Processors. The

DEATHIF event references function DeathCond(). Function DeathCond() retrieves each

Processor's STATE, counts the number of failed Processors and returns TRUE if more than

one Processor has failed.

The STATIC section of an RML model is used to declare constants and macros. In

Listing 2b, two states are defined (GOOD and FAIL) and a constant, NumProcs, which refers

to the number of Processors in the subsystem. (Note that, as of this writing, a constant

such as NumProcs cannot be used in component array declarations. See next paragraph.)

The macros ISG00D and FAILED make the simple testsfor the GOOD and FAIL state.

The GLOBAL sectionin Listing2b creates5 components, a set of 4 Processors, P [4],

and a System, SYS. The constant, NumProcs, could not be used to define the sizeof P[],

because these structures are not visibleto the C code (thus the use of GetState() and

Put St at •()).

The INIT section defines the interconnectionsbetween the declared components and

initializesthe components STATE and RATE variables.In Listing2b, the 4 SYS .Proc[3

variablesare connected to the actual P ['lcomponents. The View() function definesa one-

3.2. EXAMPLE 2: A RECONFIGURING Q[TAD 23

way connection. A Connect() function would be used to establish a two-way connection.

The Set () function initializes the 4 P[] .ProcState variables to GOOD. The RATE() function

initializes the single RATE variable associa.ted with the Processor module.

3.2 Example 2: A Reconfiguring Quad

A reconfiguring quad provides greater reliability than a non-reconfiguring quad by disba]ing

a failed processing channel. The disabled processor is no longer included in the voting. The

voter is thus protected against, another failure. Reliability depends on how long it takes the

system to detect the failed channel and disable it. The reliability model must now keep track

of GOOD processors, FAILED processors and DISABLED processors.

The ASSIST Model: The ASSIST model is shown in Listing 3. A processor state is

modeled as being either GOOD, BAD or neither. A processor that is neither GOOD nor

BAD has been disabled. The SPACE statement defines two arrays to track the GOOD and

BAD processors. The START statement initializes the processors to GOOD. The DEATHIF

statement defines failure of the majority voter when the number of BAD processors is equal to

or greater than the GOOD proces,,_rs. The two TRANTO rules state that when a processor

is GOOD it can fail to BAD with rate ProcFail and that when a processor is BAD it can

be disabled by a FAST transition with rate Prec.

The RML Model: To model the reconfiguring quad in RML, we could place the ma-

jority vote test (which is in the DEATHIF statement in the ASSIST model) in the Sys'cem

model DEATHIF event. However, we wish, with this model and the next, to begin to take

steps towards model structures which more closely simulate system function. To this end,

we introduce an FTP module which represents the redundancy management process of the

fault-tolerant computer. The FTP module is thus a logical component. It is the FTP mod-

ule's responsibility to detect failed processors and disable them. The FTP module also tests

for health of the quad with the majority vote rule.

The RML model is shown in Listings 4a-e. The Processor module has been augmented

to include a RELATION with the FTP. The Processor can be disabled by the _ through

the FTPmesa () function. A third state value, REHOVED, has been added to accommodate the

disabled processor.

The FTP module, Listing 4b, has a reciprocal RELATION with the Processor. The FTP

module TRANTO statement states that if the FTP is _'ULNF.2aIBLE it will RECOVER by a FAST

transition of rate FTPrec. The vulnerable state is defined in the function Vulnerable() as

when one or more of the Processors is failed. Recovery is implemented by sending failed

Processors the message that they are now RF,I_IOVED(see Listing 4c for Recover() function).

After a recovery or a receipt of a Processor message, the FTP must re-evaluate its health.

24 CHAPTER 3. EXTENDED EXAMPLES

This is done in the function Eval() (Listing 4b). In Eval() the number of GOOD and BAD

Processors are counted. The FTP state is set to GOODif there are no BAD Processors and

FAILed if the number of BAD Processors is equal to or greater than the number of GOOD

Processors. Notice that this is precisely the same test as was done in the ASSIST DEATHIF

statement.

The System module simplifies to a death condition which returns true when the FTP

(Listing 4d) has failed. An FTP is declared in the GLOBAL section and Connected to the

Processors in the INIT section.The System module Views the FTP (Listing4e).

3.3 Example 3: A Reconfiguring Quad with Voter

The previous examples lack physical interconnections and, as such, do not give the reader an

appreciation for the added detail of a graphically derived RML model. A quad fault-tolerant

computer would have interconnections between the voters of the processors. A block diagram

might be drawn as shown in Figure 3.1. Here, a processor is composed of a CPU and a VOTER.

The CPU communicates with the VOTER over a bidirectional link. Data sent from the CPU to

the VOTER is relayed by the CPU's local VOTER to the remote VOTERs. Assuming a degree of

synchronization between the processors, all VOTERs will have 4 copies of the data that they

can now vote, returning the result to the CPU.

An RML model which corresponds to the block diagram of Figure 3.1 is shown in Listing

5. In the Processor module (Listing5a) a RELATION to the Processor's localVoter

(VME) has been added. The Voter's message receiverisVmess(). In thismodel, when a

processor fails,ithas the additionaleffectof propagating the errorsto the localVoter via

SendValue (VME, ERROR). Conversely,a failedvoter causes the Processor to failthrough the

Vmess() function. Notice that the FTP module no longer setsthe Processor to the REMOVED

state.In thismodel a Processor isdisabled in the Voter module as willbe discussed next.

Also note that the testfor GOOD has been written without a function callin the TRANTO

and that the test has changed from an equate to a bit test. As the model becomes more

complex, multiple state descriptorswillbe used (seethe sectionon I/O interface).Having

each state descriptor assigned a bit value (i.e., 1, 2, 4...) facilitates defining and testing

states.

The Voter is modeled with 3 state variables: the Voter state (e.g., GOOD, EI_0R or

FAIL), a bitma p of Voter errors (bit 0 set if Processor 0 sends errors) and a second bitmap

(YoterEnable) enables Processor channels into the Voter. (See Listings 5b-c). The last

two state variables correspond to the error register and enable register which might be found

in an actual vote circuit. A Voter has a RELATION with its local Processor and with

the remote Voters as indicated by the block diagram. The Voter can send and receive

3.3. EXAMPLE 3: A RECONFIGURING QUAD WITH VOTER 25

I
i

I :1
I 7
I

_bter

Voter

[J
Voter

Voter

t J

CPU

CPU

CPU

CPU

Figure 3.1: Block Diagram of Quad with Voter

26 CHAPTER 3. EXTENDED EXAMPLES

messages to and from the other Voters in the system (including itself). In Figure 3.1 a

Voter's connection to the other Voters is drawn as a multi-drop, or broadcast bus. This

type of interconnect has not yet been implemented in RML and therefore must be modeled

as a fully connected interconnect, i.e., 4 transmit and 4 receive ports. The Voter must also

comnnmicate with the FTP so that the FTP can "read" the VoteError data (to detect errors)

and set the YoteEnable state (to reconfigure).

As modeled here, the Voter is a logical component and therefore does not have a failure

related TRANTO statement. However, a Voter can still fail when it is overwhelmed by bad

data, i.e., the number of erroneous data chanrmls are greater than or equal to the number of

valid data channels. The Voter Module's FailEffect () function simulates Voter failure by

changing the voter stat.e to FAIL and sending a FAIL message to the local Processor. Because

the Voter is a logical component, it. doesn't originate EI_0R messages. It does, however, route

ERROR messages received from the local Processor to the other remote Voters. This is done

in the Pmess () receiver function. The Voters are inhibited from sending the ERROR message

in Pmess() when the Voter is FAILed. This is done to protect against an infinite loop

between the Voter aald its Processor.

The re-reouted ERROR messages are received by the Vmess() function of the remote

Voters. In the Vmess() function, a bit is marked in the VoterError state variable which

corresponds to the Voter which sent the ERROR message. This bit is only marked if the

sender was enabled. Since there might have been a state change, the Eval() function is

called.

The Eval () function uses the VoterError and VoterEnable state variables to determine

the VoterState (GOOD, ERROR or FAIL) (remember that the bits in the VoterError and

VoterEnable state variables correspond to the Voter's input channels.) The evaluation

function is, as before, the majority vote rule. The Evil() function, looking only at enabled

input channels, counts the number of channels with and without errors. If there are any

enabled channels with errors the VoterState is set to ERROR. If the number of channels with

errors is equal to or greater than the number of channels without errors the Voter fails.

During the recovery process, the FTP module will "read" the VoterError state and

construct a new Vol;erEnable state to disable failed Processors. The FTP sends the new

VoterEnable state to the Voter module through the FTPmess() receiver function. The

FTPmess () function loads the new VoterEnable state and then clears the VoterError state

from any errors that may have been caused by Processors which are now disabled. Note that

if a Processor was producing errors and the FTP did not correctly configure the VoterEnable

state to mask this Processor, then the errors would still be present. Finally the VoterS_ate

is re-evaluated.

With the addition of the Voters, the simulation of the recovery process has become more

complex. The FTP module (Listing 5d-e) must now maintain a WorkingSet state variable

3.4. EXAMPLE 4: AN REDUNDANT I/O INTERE4CE 27

which is identical to the VoterEnable state variable, i.e.. it keeps track of which Processors

are part of the active confguration (or enabled into the system's voters). While this may

seem to be redundant, it. actually models quite closely how a real system might operate.

The FTP's Eva1() function has been simplified because the Voters now perform the

majority check. An FTP is now defined as failed if there remains no GOOD Processors. The

Vulnerable() function has been modified to return true if any Voters in the Work±ngSet

have detected an error.

The Recover () function has become very complex. Each Voter in the system maintains

error data on all the Voters. To diagnose the system, it is not enough to sense whether

or not the Voter has had an error, but it must be determined on which channel the error

occurred. Additionally, a system wide consensus must be arrived at, i.e., more than one

enabled Voter must agree that a particular Processor is faulty before that Processor is

disabled. To accomplish this, the Recover() function keeps four error counters (Ple.. P4e).

Each enabled Voter's VoterError state is read and passed to a subroutine (Counts())

where the bits are tested for errors. If a bit is set in the VoterError state variable, the

corresponding error counter is incremented. An error count greater than 1 indicates that at

least two enabled voters detected an error on the corresponding Processor. The appropriate

bit is set in another variable, e, if a Processor failure is diagnosed. Those faulty Processors

are then removed from the WorkingSet. The new WorkingSet is then sent to the Voters for

storage in their enable registers. Finally, the state of the FTP is re-evaluated.

3.4 Example 4: An Redundant I/O Interface

This section defines a quad redundant I/O interface. The model is similar to the quad

processor with the exception that only two interfa_:es are used at any time and only one is

needed for safe operation. There are then initially 2 spare interfaces. This model is of interest

because of the sequence dependency introduced, that is failure of a spare I/0 interface has

no effect on the system until one of the prime interfaces fail.

The ASSIST Model: When modeling the quad FTP two boolean state variables were

kept for each processor to track a processor being GOOD, BAD or REMOVED. The quad

interface requires that we keep track of a fourth attribute, i.e., whether or not the interface is

currently controlling the I/O devices. In the ASSIST model shown in Listing 6, three boolean

state variables are used. 1GOOD[] indicates whether an interface is good or failed. A one

in IO[] means that that interface is currently controlling I/0 operations. If an interface has

a detectable error (i.e., has failed while controlling I/0 operations) than the corresponding

IOError[] state variable is set to one.

The START state is initialized with 4 GOOD interfaces, interfaces 1 and 4 as controllers

28 CHAPTER 3. EXTENDED EXAMPLES

(interfaces 2 and 3 spare) and no errors. System death occurs when there are no I/O

controllers.

Two failure TRANTOs are written for each interface to capture the sequence dependency.

When a GOOD interface fails while its controlling I/O, it causes an error. Six recovery

TRANTOs describe the sequence dependent repair actions. For example, if interface 1 fails

and interface 2 is still good, then interface 2 is enabled as a controller.

The RML Model: The RML model shown in Listings 7a-e, begins with an Interface

module which is similar to the Processor module. Like the quad Processors, the Interfaces

have a redundancy manager (InterfaceManager). The InterfaceManager can either REMOVE

the Interface or place it INUSE (see function Manmess ()). An Interface can thus be GOOD,

GOODand INUSE, FAILed or FAILed and II_SE. This conjunction of state descriptors is facil-

itated by using powers of two (1, 2, 4,...) for all descriptor values. Individual descriptors can

then be ORed into or ANDed out of the state. For example, in the Interface FailEffect ()

function, the Interface state is changed from GOODto (FAILed and ERRORs) by ANDing the

state with the inverse of GOOD (thus removing the GOOD bit) and ORing in the FAIL and

ERROR bits. Likewise in the Manmess() function an Interface is activated by ORing in the

INUSE bit and deactivated by ANDing the state with the negative of II_JSE.

The InterfaceMtmager module is similar to its FTP counterpart. Either the receipt

of a message from an Interface (indicating that it has changed state) or the execution

of the recovery TRANTO will cause the InterfaceMtmager to re-evaluate itself. The

InterfaceManager is VULNERABLE when any Interfaces which are II_SE have errors. More

to the point, an InterfaceManager cannot detect a failed Interface which is not INUSE.

The InterfaceManager fails when there are no good Interfaces available. Recovery is

accomplished by first sending the REMOVED message to those interfaces that are both INUSE

and have ERRORs and then by setting to INUSE the spare Interface, if available.

3.5 Example 5:

faces

A Quad Processor with I/O Inter-

In this section, the reconfiguring qua_t model is merged with the interface model. This is

done to illustrate the utility of modular modeling. It is assumed that the failure dependency

relation between a processor and its I/O interface is asymmetric, i.e., if a processor fails, the

interface fails, but if the interface fails, the processor does not.

The ASSIST Model: The ASSIST model is shown in Listing 8. Note that the merge of

the two models is in most cases accomplished by simplying combining fields in the SPACE,

START, DEATHIF and TRANTO sections. An exception to this is the Processor failure

TRANTOs. Due to the dependency of the interface on the processor, the failure effect of the

3.5. EXAMPLE 5: A Q[rAD PROCESSOR WITH I/O INTERFACES 29

interfaces must be added to the processor TRANTO statements. Four processor TR.ANTOs

are used to cover the the four interface conditions possible with the two boolean interface

state descriptors Igood[] and IO[]. Note that in practice only three TRANTOs would be

necessary since the state Igood[]=0 and lO[]=l does not occur.

The RML Model: The RML model is shown in Listings 9a-k and a graphical depiction

in Figure 3.2. Here the models are merged by first copying their respective modules into

one file. Connecting the Processor to the Interface through a uni-directional link implies

these modifications to the modules:

. The Processor module is modified to contain a RELATION with an Interface and

failure messages are sent to that Interface in the Fai:l.Effect() and Vmess() func-

tions.

. A reciprocalRELATION to receivethe Processor message isdefined in the Interface

module. The Pmess () message receiversimply callsthe Interface FailEffect func-

tion to propagate the effectof the Processor failure.

3. The GLOBAL, STATIC and INIT sections are merged.

4. Connect () statements nmst be added in the INIT sectionto definethe Processor-Interface

relations.

30 CHAPTER 3. EXTENDED EXAMPLES

:1
vI

I:I

Voter CPU

1 11 1
Voter CPU

1 TI 1
CPU

1 TI 1

Voter

Voter

INT

INT

INT

Figure 3.2: Block Diagram of Quad with Voter and I/O Interface

Chapter 4

XREST

This Chapter describes tlle X-Windows based user interface to REST, called xrest.

4.1 Building REST and xrest

The REST system comes in a tar file called rest.tar. To install REST, move rest.tar to a

subdirectory that will be dedicated to REST, and type

tar -xf rest. tar

Following this, build REST by simply typing make. The make scripts take care of everything,

but do generate a lot of messages along the way, especially when building the parsers for

REST.

The main REST directory (where rest.tar was placed) is where the user interfaces with

REST. In addition there are subdirectories obj and obj/working. Files in obj are related

to the RML language translator and REST execution system, obj/working is a scratch

directory that, should have global read/write access.

4.2 Files required for compilation

The following files are either needed to build REST, or are provided in rest.tar.

• Source code in the local directory:

Makefile, termlist, xfilt.c, xrest.c

• Shell scripts in the REST directory:

BuildLocal, BuildRemote, KillLoeal, KillRemote,

ReRunLocal, ReRunRemote, RemoteSerial

31

32 CHAPTER 4. XREST

• Icon maps in the local directory:

addfunc.icon, addva.r.icon, client.icon, connect.icon, filter.icon

getst.icon, message.icon, rest.icon, run.icon, watch.icon

• Sound file,¢ in th,_: local directory:

comp_op.au, darth.au, flush.au, just_what_dave.au

Subdirectories of the current directory:

lib (REST module library directory),

obj (REST local execution directory)

Example REST models in the examples directory:

example.rest, net.rest

In the lust/include directo_y:

ctype.h, math.h, stdio.h, string.h, Xll subdirectory,

xview subdirectory

In the lust/include/X11 directory:

olgx subdirectory, X.h, Xlib.h

In the/usr/include/xview directory:

icon.h, notice.h, panel.h, rect.h, seln.h, sel_attrs.h,

server.h, svrimage.h, termsw.h, textsw.h, xv.xrect.h, xview.h

Other files and programs needed:

/tmp, all the code associated with running a REST model

4.3 How to compile the program

Type 'make' in this directory.

4.4 How to run the program

Type 'xrest' while in X windows. All programs loaded and saved will be assumed to come

from the directory from which you call xrest, unless explicit path names are supplied. If a

file name is given on the command line, the file will be loaded in automatically, xrest will

run under X windows releases 4 and 5.

4.5. ABOUT REST TOOL 33

4.5 About REST tool

When xrest, hereafter referred to as the REST tool program, is first started up, the main

window appears. REST tool provides the following features, each of which is described in a

subsequent section.

• Defined constraints

• The text editor window

* The REST message area

• Specifying names

• Stuff selected text

• Goto in the text, window

• Set up a watch window

• Open a term window

• Run a REST model

• Module library

• Load a REST model

• Save a REST model

• Clear the template

• Quit REST tool

4.6 Defined constraints

The following constraints are #d¢fine'd at the beginning of the xrest.c source code program.

Change them before compiling if needed.

• Maximum file name length = 128

• Maximum function name length = 24

• Maximum module name length = 24

• Maximum variable name length = 24

34 CHAPTER 4. XREST

4.7 The text editor window

Tlle text editor window, or the template, is loca,ted to the right of the main panel in the main

window. It is the only window which enables the user to alter the current REST model.

All intended modifications must be made in this window. All of the additional features [see

sections §4.10, §4.11 & §4.12] work on the templa.te.

In a.ddition, the user can explicitly alter this area if so desired. Typing a key will cause

its insertion at the caret: hitting the Delete key will remove the character to the left of the

caret. The mouse buttons can also be employed in the window as follows:

• Click the Left button to move the cursor.

• Click and drag the Middle button to highlight text.

• Hold down the Right button for the text editor menu:

- File - store is only option awilable

- View - select line, line wrap

- Edit - undo, copy, paste, cut

- Find - find, replace

- Extras - format features

There is also a vertical scrollbar which allows the user to move quickly through the REST

model. Simply hold down the Left button in the direction of the desired move (up or down)

and drag the mouse until the goal position has been reazhed. (Holding down the Right

button on the scrollbar manifests some undocumented features which probably are of little

use.)

A selection service is provided which allows the user to highlight text anywhere in a text

or terminal window using the mouse. Click and drag the Left button to select text, then

use the Left or Middle button to insert the selected text where desired.

To jump to the beginning or end of the REST model, or to a specific module, use the

Goto in the tezt window button [see §4.14]. To jump to a specific line in the REST model,

use the View option mentioned above.

The text window provides auto-indent when the user types directly in the window to

modify the code. This feature causes a new line to be automatically indented to be lined up

with the previous line whenever the Return key is pressed.

The following commands allow the user to manipulate the text window:

• ctrl-A = move caret to beginning of line

4.8. REST MESSAGES

• ctrl-E = move caret to end of line

• ctrl-P = move caret up one line

• ctrl-N = move caret down one line

• ctrl-F = move caret one character forward

• ctrl-B = move caret one character backward

• ctrl-M = insert line

• ctrl-J = insert line (also)

• ctrl-I = insert tab

• ctrl-U = delete line

• ctrl-W = delete word (backward)

35

4.8 REST messages

The REST message area is located in the upper left hand corner of the main REST tool

window. REST messages serve two purposes:

1. To inform the user of tile last action performed.

, To warn the user if the previous command could not be

executed. This type of message is accompanied by a beep

to alert the user of problems (names not specified,

wrong names specified, etc).

A summary of the most frequently posted REST messages is given at the end of this

documentation [see §4.24].

4.9 Specifying names

Three name request lines reside directly below the REST message area.

mation from the user:

1. Library dir: the library directory name.

Each seeks infor-

36 CHAPTER 4. XREST

2. File name:' the current REST model name.

3. Module name: tile current module name.

To change any of these lines, Left click the mouse on the appropriate line at the spot

where the caret should be placed and type away. The Delete key removes the character to

the left of the caret, and ctrl-A and ctrl-E are used to move the caret to the front and back

of the current line, respectively. Hitting Return moves the caret to the next line.

Whenever tile user chooses a module library option [see §4.18], the library used is the

one with the directory whose name is specified by the Library dir line. If no directory name

is given, the current directory is used as a default.

Whenever a load or save option [see §4.19 & {}4.20] is chosen, the name of the file read

from or written to is the one specified by tile File name line.

Whenever a module is added or added to [see §4.10, {}4.11, §4.14, {}4.1,5, & §4.18], the

module affected is the one specified by module name. The exception occurs when a window

names a module different fi'om the one specified by the Module name line, in which case the

module specified in the window is used instead.

4.10 Add a new module

This feature automatically inserts a new module into the REST model. To do this, simply

click the left button to the Module name line [see §4.9], type in the desired module name,

and Left click the Add a 'n¢:w m,odule button. The new module will be inserted at the top

of the REST model. If the module cannot be added (ie, is not specified or has a name the

same as another module), the REST message will beep and say so.

4.11 Add to a model

This feature gives the user the option of adding any or all of the following items to a REST

model:

1. Add a function declaration (to a module)

2. Add a variable declaration (to a module)

3. Add a Connect call (in the INIT section)

4. Add a GetState call (to a module)

4.11. ADD TO A MODEL 37

To open the desired window to make additions, Right click and drag Right the Add to

a modulc.., button, and then release the button on the option preferred.

Only one of each of these windows will stay open a.t a given time. When the window

is shown, provide all of the specifications which appear in boldface to add that item to the

REST model.

To add the new item creat, ed, Left click the Add this item button. To hide the window,

Left click the Close thi,_ u,iudow button. To iconify the window, Left click the boxed X in

the upper left corner; iconi_,ing is useful for bringing up a. window without blanking out its

a.ttributes.

4.11.1 Add a function declaration

This option automatically inserts Rate, Deathif, Prune:if, and Tranto declarations and func-

tions into specified module in the REST model.

To add a Tranto function, the Rate variable must. already have been specified in the

module.

Neither functions nor variables added may have the same name as a module, nor may

they have the same name as any other identifier in their own module. Variables and functions

of the same type are automatically grouped together.

A known deficiency of REST tool is the inability to allow the insertion of identifiers into

a module where a word with the same name exists. For example, if the word 'tree' appears

in a comment in a module, REST tool will not allow its name to be used with its automatic

adding of a variable or hmction. The user must implement a manual override to make such

an endeavor possible.

The Module name in the "Add to" dialogue window will be set, by default, to the module

name in the main REST window.

4.11.2 Add a variable declaration

This option automatically inserts State, Rate, Relation, and Generic Relation variable dec-

larations into the specified module in the REST model.

In most respects adding a variable declaration to a module is the same as adding a

function declaration. One noteworthy feature should be highlighted: a new module skeleton

will automatically be inserted [see §4.10] if a nonexistent module name is given in the Relation

type (note that this will not be done for the Generic case).

With State and Relation variables, an array size of 1 indicates no array; it is the default.

To increment or decrement the array size, Left click the appropriate arrow.

38 CHAPTER 4. XREST

No module may be declared in its own Relation. (In addition, Relations do not need a

message receipt function.)

4.11.3 Add a Connect call

When using this option, first position the caret in the text window by Left clicking the

mouse at the exact place where the insertion is to occur.

Connect calls may only be inserted in the hdt section of the REST file, and only with

variables declared in the Global section. REST tool automatically checks for syntactic and

semantic errors within the Connect call before inserting it into the REST model. The user

must provide the explicit array connections after the Connect call is inserted.

An additional feature allows the Connect call to be nested in a for loop automatically if

so desired. Also, by setting the View option, a View call can be set up to establish a one-way

connection.

4.11.4 Add a GetState call

When using this option, first position the caret in the text window by Left clicking the

mouse at the exact place where the insertion is to occur.

If no Relation is specified in the GetState window, the GetState is assumed to be working

on the module in which the call will reside. REST tool automatically checks for syntactic

and semantic errors within the GetState call before inserting it into the REST model. The

user must provide the explicit array numbering after the GetState call is inserted.

A GetNewState call can be rendered instead of a GetState call simply by toggling the

choice buttons in the window to the desired call.

Note that. Generic Relation GetState calls must be produced manually.

4.12 Add a section

To use this feature, Right click on the button and drag the mouse to the right and down

to the section desired. The following sections are available for addition: Static, Global, and

Init. The section selected will be automatically inserted in the correct place in the REST

model, if such a section does not already exist there.

4.13 Stuff selected text

To use this feature, Left click the caret in the text editor window [see §4.7] where the text

will be inserted. Next, Left drag the mouse over the text, in some other window, to be

4.14. GOTO IN THE TEXT EDITOR WINDOW 39

inserted. Finally, Left click the Stuff selected text button in the main panel to insert the

selected text in the appropriate spot in the text editor window.

4.14 Goto in the text editor window

This feature moves the caret and user's view in the REST text. window. Left click the button

to jump to the module specified by the Moduh name line [see §4.9]. The view is also shifted

to that point.

If the Right button is clicked and dragged right., a menu is pulled up which also provides

the options of moving directly to the top or bottom of the text window. The view is also

shifted to that point.

4.15 Set up a watch window

To create a new watch window, Left click the Set up a watch window button. Watch windows

allow the user to observe several parts of the REST model at once.

As many watch windows can be opened at a time as desired, though it is recommended

that. the user open no more than can truly be watched at a time (to keep REST tool running

fast). Module headings, functions, and the Static, Global and Init sections may be watched.

Watch windows are read-only, and they do not change as the text in the REST text

window is being altered. To watch a module heading, the module name must be specified;

to watch a function, the module name and function name must be specified.

To watch a selected item once in the watch window, Left click the Watch button. If the

text. is altered and then the watch button is pressed again, the contents of the watch window

will be updated. To destroy the window, Left click the Close this window button. To iconify

the window, Left click the boxed X in the upper left corner, lconify the window only if fast

access is a priority, as it is just. as easy to open a new watch window.

The REST tool message area will report if there are mismatched braces, or if they are

matched correctly, how many pairs exist in the current REST model. If the braces are

mismatched in the REST model, the watch window will refuse to watch anything until the

braces are matched.

If the Module option is selected and no module name is specified, the watch window will

perform a Watch All Modules. It will list the names of all of the modules which are

present in the current REST model, as well as the St.alic, Global and Init sections if they

exist.

40 CHAPTER 4. XREST

4.16 Open a term window

This feature opens a single terminal window for viewing the file system while REST tool is

running. If more terminal windows are desired, use the command zterm _ to create them.

To iconify the terminal window, Left click the boxed X in the upper left hand corner of the

window. To hide the terminal window, Left click the Close this window button.

When the window is first opened, the user is placed in the directory where the REST

tool executable code resides.

The window may be resized by Right dragging the symbol in the upper right hand

corner. In addition, the view may be split by Right dragging the mouse at the scrollbar.

The view will be split hk two at the place where the scrollbar was at the time of the split.

To regain the caret in the terminal window, Left click the caret.

4.17 Run a REST model

When this main panel button is Left clicked, first the output window and then the run

window pop up on the scr_n. Place them where you desire. This feature will run the most

recently saved version of the REST model, so be sure to save your creation before attempting

a run.

To run a REST model, first specify the model's file name, the desired mission time (an

integer) and pruning level (a real number less than 1.0). An optional "report interval" that

controls the frequency of reporting to the run-time display window may be specified. For

a selected report interval of n, a processor will execute n path-records between each report

update. Since report calculations do require computational resources, relatively infrequent

intervals, e.g. 5000, are recommended. The file name will automatically be set to the current

REST model's file name when the window is first opened. To select the machine on which

the REST model will be run, Right click the little arrow and drag the mouse down to the

remote machine name desired.

You can also specify the following values for Detailed Event Count: all, or a positive

number n. This value controls the number of events that REST will record during a run.

The default value is 100. REST records the n events with highest upper bound on their

probability of occurrence These records are available after the run completes. Large values

of n cause REST to run out of dynamic memory, a situation from which it does not exit

grazefully.

The text file termlist should be altered to specify the machines on which REST can run.

The first line of termlist must be local, which indicates that REST can be executed in the

current directory. This line is then followed by 0 or more specifications of remote serial and

4.17. RUN A REST MODEL 41

parallel machines using the following notation.

• Remote machine name (like hilberl.cs.wm.edu)

• Remote machine user name (like: nicol)

• Remote REST directory (like/mndisk/rcstuser/)

, Remote directory to rcp the REST model (like,/Zmn, disk/restuser/zfer/)

• Type of remote machine (either "'serial" or "parallel")

Use the termlist provided with this release of REST tool for emulation. This file should

be altered prior to running the tool and provides the ability to run REST on a variety of

serial and parallel machines.

The user can toggle back and forth between the various machines by using the Machine

to run REST model menu. If the REST model has already been run once on a machine, and

no changes have been ma,de to the source since then, Left clicking the Rerun model button

will run the model on the machine, with or without new parameters, without having to go

through the trouble of recompiling the problem specific code.

The user can also select, whether the run should be "smart", or "fast"; with the former

selection being default. "Smart" runs perform array bounds checking on all references to

state variables, and in debug mode provide more information about the model behavior. The

"Fast" selection should be made only on production runs; it has been observed to deliver as

much as a factor of two speedup over the standard method.

Left clicking the Show outputs button will display the output windows (display, debug

and state records) without doing a REST model run. The Quit button is used to terminate

the run tool presently; at most one run tool can be open at a time.

Left clicking the R,ur_ model button will attempt to run the specified REST model. This

usually takes a while, so the cursor is changed to the busy signal to let the user know that

the model is running and not hanging. To stop the model presently running, Left click the

Kill run button.

Left clicking the Report button after a run will print out event files generated by the

most recent run. Detailed Events give path sequences describing the events; SummaryB-

yArray events are aggregations obtained by ignoring specific module variable array indices;

SummaryByType are aggregations obtained by ignoring array indices, and further aggregat-

ing based on module type. The events are listed in decreasing order of probability, and the

"cure" field for an event, gives the sum of probabilities of that event and all events ahead of

it in the list. The "cure" field of the last event thus indicates the significance of the reported

events relative to the sum of all death-state probabilities.

42 CHAPTER 4. XREST

Turning on the Debug option allows the user to debug the REST model run. For a list

of commands, type "HELP" at the command line in the debug window. Only serial models

may be debugged.

To provide information during tile simulation a statistics window is attached to the

bottom of the output window. The statistics are periodically updated. Typical values for

the report frequency range from 1000 (often) to 100000 (infrequent). However, if no such

report is desired (to speed up the sinmlation), set the report frequency range to 0. The

following vital statistics are shown in the statistics window:

• Estimated completed work

• Average processor utilization

• Number of processors

• Number of paths processed

• Number of nodes generated

• Number of paths pruned

• Upper bound on pruning

• Lower bound on pruning

• Sum of probabilities of pruned paths

• Instantaneous pruning bound

• Number of death states

• Upper bound on death state probability

• Lower bound on death state probability

As is the case with the other subwindows, Left clicking the Close this window button

will hide the window, while Left clicking the boxed X in the upper left hand corner will

iconify the window.

When a run has been successfully completed, the run display window will contain the

output of the execution shown. Use the scrollbar and mouse to view the window. The text

in the window is read-only. User options in this window axe achieved by Left clicking the

appropriate button:

Iconify window: the upper left boxed X.

4.17. RUN A REST MODEL 43

Close window: the Close button.

Clear template: the (:lear button.

Save template: the Save button (file name must be specified).

To use the run tool without calling up REST tool, simply type at the shell prompt: 'xfilt

REST model file name'.

It should always be remembered that every invocation of REST generates files with

fixed names, in a fixed portion of the file directory. Any "old" REST executables are thus

automatically overwritt.en (except when the "rerun" option is selected). A user can save and

later rerun old REST executions with the following sequence.

1. Generate the REST model.

2. Save the executable file obj/working/rest to another location, obj/working is wiped

clean with each REST invocation.

3. To restore, move the executable back as obj/working/rest

4. Use the "rerun" option to re-execute.

4.17.1 Debugging

REST provides a debugging tool to aid the model development process. However, in order

to use the tool effectively the modeler must understand the workings of REST analysis. We

provide a sketch below,

The analysis employed by REST is based on a depth-first generation and analysis of the

underlying state-space. The set of STATE variables from all instantiated module variables

forms the state-vector for the state-space. Given a state-vector S, REST checks all DEATHIF

conditions by testing each DEATHIF Condition function associated with each and every

module variable. If S is not found to have failed, REST applies a pruning test. If the

search is not pruned REST, generates all transitions possible from S, again by checking

all TRANTO condition fnnctions for all module variables. The set of transformed states

(created by executing Action statements) are called the descendents of S. In classic depth-

first fashion the list. of descendents is attached to the front of a working list, and the first

member of the list is selected for the same type of analysis and expansion as was performed

on ,.q'. The size of the working list grows and shrinks as the computation progresses. The

computation is known to have completed when the working list is empty.

44 CHAPTER 4. XREST

This basic understanding is all that is necessary to debug a REST model. The Xrest

Rnn window has a debug option, selectable by clicking the Debug "On" box. This option

is selectable only when a. serial execution engine is selected from termlist. Upon further

selection of tile Run model button (or Rerun model button, if appropriate) two new windows

are brought up. The first, entitled "Debugger Tool", is the primary work area. for debugging.

The second, entitled "State Records", is used to display the entire REST model state vector.

The "command" line in the Debugger Tool is used to accept any one of a list of debugger

commands, to be described below. A command is entered by typing it. onto the command

line and hitting keyboard's Return key. At any point a brief summary of legal commands

can be called up by entering the command help. A longer summary is available with the

command HELP.

Before discussing tile debugger commands it is helpful to consider the overall structure

of the debugger. Every RML model has two levels of breakpoints which are always auto-

matically inserted. Calling the debugger allows those breakpoints to be enabled. Once at a

breakpoint, the debugger permits the examination of module state variables and the execu-

tion engine's working list. The order of states in the working list can be re-arranged at this

time. Debugging options can also be enabled and disabled. At the coarsest level, a break-

point exists just prior to the generation of a state's descendents, a so-called Pre-generation

brtakpoiT_l. At a finer level, brea.kpoints can be enabled following each RML event.

REST encodes a state vector in terms the sequence of events applied to the initial state

that result in the vector. This code appears within the debugger. The code is a sequence of

pairs, where the first, component of a pair is the identity of a module variable, and the second

component is the identity of an event declared within such a module's MODULE definition.

An example of such a description, taken from the debugger, is given below.

-.... Pre-generation breakpoint :

Current path sequence

..... .(FTP [0],Fail). (PC [0],Crash). (FTP [0]_2)

Here, FTP[0] and PC[0] are module variables (it is possible in this case that single module

variables named FTP and PC are declared. This code treats all module variables as members

of arrays). Recall that events can be symbolically labeled within a MODULE definition.

That symbol is used as the second component in a pair, e.g., Fail and Crash above. Each

event has the default symbol of its relative position in the MODULE declaration. Above,

the symbol 2 means that the second event in the appropriate MODULE is the one being

referenced. The sequence records the series of events, read left to right, that created the

referenced state vector.

A description of the state vector (aka path sequence) about to be processed is given at

every Pre-generation breakpoint. With pre-event breakpoints, the event just processed is

4.17. RUN A REST MODEL 45

reported using this same code.

The following list, describes legal debugger comnlands.

cont (Continue) Continue to the next breakpoint.

dcp (display current path) The code for the current path sequence is displayed. At an event

breakpoint, the event just, processed is included as part of that description.

dgl (display generaSed paths) A list of descendents of the last state vector processed are

displayed. This should only be used a,t a Pre-generation breakpoint. It can be used at

post-event breakpoints, but the effect is tile same as dwl (see below).

dsv (display state vector) All STATE variables of all module variables are displayed, in the

State Records window. This display is not updated automatically; dsv must be called

every new time the state vector values ea-e examined.

dwl (din'play working list) The entire working list is displayed.

exit Exit the debugger. This causes the debugger windows to disappear.

front The dgl and dwl commands list state vector in the order they appear in the working

list. Command front with an integer argument i moves the state vector labeled i to

the front of the list, thereby making it the next state vector to be processed.

hex Command hex + causes all subsequent displays of integer values to be given in hex-

adecimal, hex - turns this feature off.

log Command log + turns on a log of the the debugging session, log - turns it off. The log

file name is rest.log, found in subdirectory obj/working. Be forewarned that executing

log + causes any old version of rest.log to be lost.

prune This command allows the pruning level to be changed. It reports the current value,

and prompts for a new one.

step Command step + enables breakpointing after every event, step - disables this feature.

trace Command trace + enables a detailed trace of REST analysis activity. Consider the

segment below, obtained as part of execution for one event.

Breakpoint following TRANTO even% FTP[O] :I

>> cont

Enter routine FTP[I] :GoodFTP

FTP [I] :GoodFTP:cond calls GetState(Status [0]) - i

46 CHAPTER 4. XREST

Enter routine FTP [I] :DeadFTP

FTP[I]:DeadFTP calls PutState(Status[0]), old = I, new - 2

FTP [i] :DeadFTP sends message to (local)PrCont [0] - (global)PC [5] :LFTP [I]

Enter routine PC[5] :RecvFTPMsg

PC[5] :RecvFTPMsg:effect calls GetState(PControl[0]) = 0

FTP[1] :DeadFTP sends message to (local)PrCont [I] = (global)PC[6] :LFrP[2]

Enter routine PC [6] :RecvFTPMsg

First of all, in this case the step option has already been selected. A great deal

of information is generation by the trace option, and its presentation is broken up

into more manageable pieces under stepping. In the above trace, a TRANTO event

has just. been processed. The event is associated with module variable FTP[0]; the

notation :1 signifies event "1", in this case an automatic label. User supplied labels

(e.g. FailEvt in Figure 2.1) are used here, when available. The trace reveals the

processing of another TRANTO event. Recall that the processing of a state includes

generation of all possible transformations. The trace shows the computation used to

attempt one such transformation. A routine GoodFTP() is called to evaluate whether

the status of module variable FTP [1] is GOOD. On the second line above we are told

that routine GetState() is called to fetch the value of STATE variable Status[0],

and that the value returned is 1. Nomenclature FTP [1] :GoodFTP:cond identifies the

module variable involved, the function involved, and the fact that the function is being

called to support the conditional portion of the event. Apparently value 1 means

the FTP is GOOD, because in the third line we observe a call to DeadFTP() which

initiates the effects of its failure. In the fourth line we see that the variable Status [0]

is modified to value 2 (FAILED); the fifth line reports the transmission of a message

reporting the failure. The fragment

(local)PrCont [0] - (global) PC [53 :LFTP [1]

in that line indicates that the message is sent to the RELATION variable known locally

as PrCont [0]. From a global perspective, that RELATION is bound to module variable

PC [5], and from PC [5] 's viewpoint the calling module is a RELATION module known

to PC [5] as LFTP [1]. The sixth line shows that routine RecvFTPMsg(), bound to global

module variable PC [5], is called to handle the message. It, in turn, examines STATE

variable PControl [0]. Message propagation apparently stops at that point, because

the next line reports that control is reassociated with FTP [1], who now sends a message

to its RELATION module PrCont [1], a message received by routine RecvFTPMsg,

bound to module variable PC [6J. The event processing does not terminate here, this

fragment is included to provide the user with the sense trace information.

4.18. MODULE LIBRARY 47

trace - disables the trace option.

user user + enables the user control option. This option permits the user direct control

over the next. event to be applied to a state vector. Consider the sequence below.

..... Pre-generation breakpoint :

Current path sequence

..... . (FTP[O],I)

>> user ÷

Specify module array variable name.

>> NI

Specify module array variable (0-5).

>> 2

Specify event identifier.

>> 1

>> coat

..... Pre-generation breakpoint :

Current path sequence

..... .(FTP[O],I). (NI[2],1)

Entering user mode we are prompted to specify the array name of a declared module

variable. We choose NI, and are prompted to specify which of the 6 members of that

array we desire. Choosing NI l"2], we are then prompted for the identity of the event

that should be executed. We choose the first event, and then instruct the system with a

cont to execute the selected event. The next current path sequence shows that indeed

the event we selected was executed, and that the resulting state vector is now at the

head of the working list. The user option thus lets the user investigate specific event

sequences, short-circuiting the automatic REST mechanisms for creating state vectors.

The system remains in user mode until the command user - is given to disable it.

The system may also exit user mode if the user makes an error when prompted by the

system. If there is ever any doubt,the user + can be reissued.

4.18 Module library

This feature provides the capabilities of saving a module to a library or inserting a precreated

module from a library. The library is the directory whose name is specified by the Library

dir line [see §4.9]. A blank line tells REST tool to use the current directory.

48 CHAPTER 4. XREST

4.18.1 Insert from module library

To use the library features, Right click the mouse on the Module library.., button, and

Right drag the mouse until the library features menu appears. To insert a module, Right

drag the nlouse again and wait for the library modules available menu. Drag down the mouse

to the module desired and release the Right mouse button. The module will be inserted

at the beginning of the current REST model, provided no module with that name presently

exists.

If there is a desire to insert modules not originally created and saved by REST tool, make

sure the name of the file is modulename.mod, where modulename is the name of the module.

Also make sure the file contains only the module to be inserted, because all contents of the

file will be inserted at the beginning of the REST model.

4.18.2 Save to module library

To save a module to the library, make sure the module name and library directory name are

specified in the appropriate lines [see §4.9]. REST tool will save the module in a file called

modulename.mod, whose format is described above. Note that this action does not alter the

current REST model.

4.19 Load a REST model

To load a REST model, first specify the file name in the File name line [see section §4.9],

and then Left click the Load a REST model button. If the code has been modified since the

last save, a notify window will pop up, requesting that the current file be saved first.

4.20 Save a REST model

To save a REST model, first specify the file name in the File name line [see section §4.9],

and then Left click the Save a REST model button. Save will retain the previous save as

a backup file in the same directory, with the file name appended by the extension BAK.

SAVE OFTEN!!!

4.21 Clear the template

To clear the text window, Left click the Clear the template button. If the text was modified

since the last save, a notify window will pop up asking which course of action is REALLY

4.22. QUIT REST TOOL 49

desired. If the template is cleared it cannot be retrieved ('000PS!'), so plan the

course of action carefully.

4.22 Quit REST tool

To quit fl'om REST tool, Left click the Quit REST tool button. If the text was modified

since the last save, a notify window will pop up asking which course of action is REALLY

desired.

4.23 Program Enhancements

A variable or function name cannot take on as a

in that identifier's module.

name any word which appears

4.24 List of REST messages

The fo]lowing messages may appear in the REST message area.

Addition subwindow closed The window has closed successfully. To use the window

again, Left click the Add to REST model button in the main window.

Addition subwindow opened The window has opened without problem.

All modules listed The l/Vatch all modules instruction was performed successfully [see

§4.15], and all of the modules are listed in the watch window in the order they appear

in the REST model.

Can only connect in Init section Connect calls can only be made in the Init section of

the REST model, so the caret must be repositioned to a place within the Init section.

Clear aborted The clear attempt was unsuccessful, whether intended or not.

Cond and state funcs must be unique The names of the identifiers are the same, which

is illegal in the REST world.

Connect added The Connect call has been added without problem.

Declaration in Global is bad A variable in the Global section has been declared of a

module type which does not exist in the current REST model.

50 CHAPTER 4. XREST

File not found No fi]e of that name exists. Perhaps the path is not correct, or a. capital

]etter is missing, o," the file name has not been specified i,1 the File name line, or

something similar.

File not overwritten No save was attempted. The file name must be changed if a file save

is desired to avoid overwritting the data file with the given file name.

Filter template cleared The filter template has been cleaned free of all outputs formerly

contained within.

Filter template saved The contents of the filter template have been saved to the specified

filename. Note that this will not clear the template.

Func name is not unique An identifier already exists with that name in that module.

Function added The function declaration in the module hea_ler and the accompanying

function skeletons in the Code section were added to the module successfully.

Function not resident in module No function of that name has been declared in the

module specified.

GetState added The GetSta,te call has been added without a problem.

Global section does not exist The Global section of the REST model is necessary for the

present instruction to execute.

Goto successful REST tool was able to reposition the caret.

Init section does not exist The Ini/ section of the REST model is necessary for the

present instruction to execute.

Library module was inserted No problems were encountered placing it at the beginning

of the current REST model.

Load complete The REST model has been successfully loaded into REST tool.

Mod cannot be its own Relation In a Relation declaration, the module named as the

Relation must be different from the name of the module into which this declaration

will be placed.

Mod func and var names must be unique In a module header's Relation declaration,

the message receipt function and variable name must be different from each other and

every other identifier in the module. An exception: different Relations can share the

4.24. LIST OF REST MESSAGES 51

same message receipt, function, in which case a REST message will inform the user

that such a thing has been done.

Module already exists The module name chosen is already in this REST model.

Module does not exist The module name chosen is not in this REST model.

Module library is empty No files ending in .rood reside in the specified library directory.

Module not saved to library The save was aborted successfully.

Module saved to library A file with the name modulename.mod has been created suc-

cessfully in the specified library directory.

Msg rec func exists; new Mod added This is actually two messages in one. See the

messages for Ms9 rec func name not unique and Variable and new Module added.

Msg rec func name not unique A function with that name already exists in that mod-

ule; REST tool assumes that the duplicate name was intended, for example when using

the Null() function.

Must specify a pruning level The REST model cannot be run without a numeric prun-

ing level given.

Must specify module Var name During the process of creating a GetState call, the name

of the module name has been specified; the variable of that type declared within the

module must be used instead.

Must use Relation variable In creating a Connect call, the module name has been spec-

ified instead of the variable of that type declared in the Global section of the REST

model.

New module created The module was successfully added to the beginning of the REST

model.

No file name selected A file name must be specified in the main window's File name line

before a REST model can be saved.

No function name given A function name must be specified before REST tool can exe-

cute the instruction.

No module name selected A module name must be given before REST tool can execute

the instruction.

52 CHAPTER 4. XREST

No modules exist No modules have been created yet in the current REST model.

No module was inserted The Add a library module was aborted.

No variable name given A variable name must be specified before REST tool can execute

the instruction.

Quit aborted The quit a,ttempt was unsuccessful, whether intended or not.

Rate variable does not exist To add a Tranto function, a Rate variable of that name

must already have been defined in that module. To add the function, then, call up

the Add a variable window, add the Rate variable, and then Left click the Add this

.function button in the Add a function window.

Relation module not declared The GetState module specified does not presently reside

in the current REST model.

Relation module is generic The GetState module specified has been declared of the generic

type. The GetState call must be entered manually to ensure that the user gets what

the user wants.

Relation not declared in Global The Connect call can only connect two modules whose

variables have been declared in the Global section.

Relation not declared in module The Connect call can only connect two modules whose

variables have been declared in the proper modules.

REST model run complete The REST model has finished running, with its output ap-

pearing in the filter display window.

REST model running Tile REST model is running, but this has been known to take a

while, so be patient.

Run window opened The Run a REST model window has been opened without problem.

Save failed The save command was not successful.

Save succeeded The save command was successful. REST tool can now be cleared the

template or exited. When a REST model is saved, the last version is also saved in the

name filename appended by a % sign, in the same directory that the REST model is

saved.

Section added The section has been added successfully to the proper position in the REST

model.

4.24. LIST OF REST MESSAGES 53

Section does not exist The section referenced (either Static, (;lobalor Init) does not exist

presently in the REST model.

Some var attributes not given One or more variable attributes has been left blank, and

they must be specified before REST tool can execute the instruction.

State var not declared in module When creating a GetState call, the state to be re-

treived does not exist in the module specified.

Template cleared The main window's text template has been successfully wiped clean.

Useful in building another REST model without exiting REST tool.

Template modified; please save or clear A new REST model cannot be loaded into the

text editor window until the current REST model has been saved or cleared since its

last modification.

Term window opened The terminal window has been opened without problem.

There are ? pairs of { }'s Gives a count of the number of braces pairs in the REST model.

If this message is displayed, the watch instruction has executed correctly, and the watch

window now is looking at the intended item.

There are too many braces In order for a watch window to successfully watch an item,

the number of open braces in the REST model must equal the number of closed braces.

This message alerts the user to an imbalance which must be remedied before a watch

can be performed.

Think again A REST model must have something in it before it can be saved.

This feature not yet available The current release of REST tool does not support this

feature.

Var name is not unique An identifier already exists with that name in the module.

Variable added The variable declaration and accompanying function skeletons have been

added to the module successfully.

Variable and new Module added The variable declaration and function skeleton for the

Relation have been added, and the module named in the declaration previously did

not exist. It has been created and inserted at the beginning of the REST model.

Watch window added A new watch window has been created successfully.

54 CHAPTER 4. XREST

Chapter 5

Listings

Comment ffi O;

"Echo _ 0;"

"prune ffiI.OE-14;"

PFail ffiI.OE-4;

space - (P: array[1..4] of 0..1);
Star_ ffi (4 of 0);

dea_hif (P [1] ÷P [23 ÷P [3] ÷P [4] > 1) ;

for isl,4;

if (P[i]ffiO) _ranto P[i]-I by PFail;

endfor;

Listing 1. ASSIST Model of Non-Reconflguring Quad

55

56 CHAPTER 5. LISTINGS

MODULE Processor {

STATE ProcState;

RATE ProcFail;

IF ProcGood() TRANTO FailEffect() BY ProcFail;

CODE {

//FAILEFFECT

void FailEffect() {

PutState(ProcState,FAIL);

} //FailEffect

//PROCGOOD
int ProcGood() (

return(ISGOOD(GetState(ProcState)));

> //ProcGood

} //CODE

} //Processor

MODULE System (

RELATION Processor Procs[4];

DEATHIF DeathCond();

CODE {

// Death if 2 or more failed processors

int DeathCond()

int d,i;

d=O;

for (i=O; i<NumProcs; i++)

if (FAILED(GetState(Procs[i].ProcState))) d÷÷;

return(d>1);

} // DeathCond

} //CODE

} //System

Listing 2a. RML Model of Non-Reconflguring Quad

57

STATIC

{
#define G00D 1

#define FAIL 2

#define NumProcs 4

#define ISG00D(s) (s_G00D)

#define FAILED(s) (s_FAIL)

}

GLOBAL {

Processor: P[4];

System: SYS;

}

INIT

{
int i;

for (i=O; i<NumProcs; i++)

{
View (S¥S .Procs [i] ,P[i]) ;

Set (P [i3 •ProcState, GOOD) ;

}
Rate(Processor.ProcFail,1.0E-4);

}

Listing 2b. RML Model of Non-Reconflguring Quad (contd)

58 CHAPTER 5. LISTINGS

comment = O;

"Echo = 0;"

"prune= 1.OE- 14;"

PFail = I.OE-4;

Prec = 3600;

space = (Pgood :array[1..4] of 0..1, Pbad: array[1..4] of 0..1);

Start = (4 of 1, 4 of 0);

deazhif ((Pbad [I] +Pbad [23÷Pbad [33 +Pbad [4])>=

(Pgood [I] ÷Pgood [2] +Pgood [3]÷Pgood [4])) ;

for i=i,4;

if (Pgood[i]=l) tranto Pgood[±]=O,Pbad[i]=l by PFail;

if (Pbad[i3=l) Zranto Pbad[i]=O by FAST Prec;

endfor;

Listing 3. ASSIST Model of Reconflguring Quad

MODULE Processor {

STATE ProcState;

RATE ProcFail;

RELATION FTP FTP: FTPmess();

Processor: IF ProcGood() TRANTO FailEffect() BY ProcFail;

CODE {

//FAILEFFECT

void FailEffect() {

PutState(ProcState,FAIL);

// Notify FTP Parent that a processor has failed

SendValue(FTP,FAIL);

} //FailEffec%

I/PROCGOOD

int ProcGood() {

return(GetState(ProcS%ate)aGOOD);

} //ProcGood

/IFTPMESS

void FTPmess(msg.who)

int *msg, who; {

// FTP can alter child's state. Typically to REMOVE from working set

switch (*ms E) {

case REMOVED: Pu%SZate(ProcState,REMOVED); break;

} /iv.itch

} llFTPmess

} //CODE

} //Processor

59

Listing 4a. RML Model of Reconflguring Quad: Processor Module

60 CHAPTER 5. LISTINGS
l

MODULE FTP {

STATE FTPS:ate;

KATE FTPrec;

RELATION Processor P[4]: Pmess();

FTP: IF Vulnerable() TRANTO Recover() BY FAST FTPrec;

CODE {

IIEVAL

// This function counts GOOD and BAD processors (Maybe I should call

// it SantaClaus) and sets FTPState GOOD, VULNERABLE or BAD accordingly

void Eval() {

int g,b,p;

g=b=O;

for (pffiO;p<NumProcs; p+÷)

if (GetNewState(P[p].ProcStaZe)==GOOD) g÷÷;

else if (GetNewState(P[p].ProcState)=zFAIL) b÷+;

}

if (b==O) PutState(FTPState,GOOD);

if ((b>=g)ll(g==O)) PutState(FTPState,FAIL);

} //Eval

//VULNERABLE

int Vulnerable() {

int p,f;

f=O;

for (p=O; p<NumProcs; p++)

if (GetState(P[p].ProcState)ffiffiFAIL) f++

return(f>O);

} //Vulnerable

Listing 4b. RML Model of Reconfiguring Quad: FTP Module

61

//RECOVER

// If a Proc is BAD we REMOVE it from WORKING set

void Recover() {

int p;

for (p=O; p<NumProcs; p++)

if (GetStaZe(P[p].ProcState)==FAIL) SendValue(P[p],REMOVED);

FTP_EvaI();

} //Recover

//Pmess

I/ A Proc has changed state, so we should re-evaluate FTP

void Pmess(msg,who)

int *msg,who; {

FTP_EvaI();

} //Pmess

} �/CODE

}// FTP

Listing 4c. RML Model of Reconflguring Quad: FTP Module (contd)

62

MODULE System {

RELATION FTP FTP;

DEATHIF FTPFail () ;

CODE

{

//FTPFAIL

int FTPFaiI() {

return(GetState(FTP.FTPState)=mFAIL);
} FTPFail

} //CODE

}//System

CHAPTER 5. LISTINGS

Listing 4d. RML Model of Reconfiguring Quad: System Module

63

STATIC

{
#define GOOD I

#define FAIL 2

#define REMOVED 4

#define NumProcs 4

}

GLOBAL {

Processor: P[4];

FTP: FTP;

System: SYS;

}

INIT

{

int p;

for (p©O; p<NumProcs; p++)

{
Connect (FTP. P [p], P[p]. FTP) ;

Set (P[p] .ProcState ,GOOD) ;

}
Set(FTP.FTPState,GOOD);

View(SYS.FTP,FTP);

Rate(FTP.FTPrec,3600.O);

RaZe(Processor.ProcFail,1.0E-4);

}

Listing 4e. RML Model of Reconfiguring Quad: Initialization

64 CHAPTER 5. LISTINGS

MODULE Processor {

STATE ProcState;

RATE ProcFail;

// Relation with sibling voter

RELATION Voter VME: Vmess();

RELATION FTP FTP;

IF (GetState(ProcState)&GOOD) TRANTO FailEffect() BY ProcFail;

CODE {

//FAILEFFECT

void FailEffect() {

int p,v;

PutState(ProcState,FAIL);

SendValue(VME,ERROR);

II
II

Tell Parent FTP we've failed (Voter could do this as error report

But then all 4 voters would send message

SendValue(FTP,FAIL);

} //FailEffect

IIVMESS

I/ When Voter Fails the sibling Processor Module also fails

void Vmess(msg,who) {

Processor_FailEffect();

} I/Vmess

} //CODE

} //Processor

Listing 5a. RML Model of Quad with Voter: Processor Module

65

MODULE Voter {

STATE VoterState,VoterErrors,VoterEnable;

// Relation with sibling processor

RELATION Processor PME: Pmess();

// Transmit Ports

RELATION Voter VSend[4];

// Receive Ports

RELATION Voter VReceive[4]: Vmess();

RELATION FTP FTP: FTPmess();

CODE {

// FAILEFFECT

// When Voter Fails it notifies its sibling processor
void FailEffect() {

PutState(VoterState,FAIL);

SendValue(PME,FAIL);

} //FailEffect

//EVAL

void Eval() {

int g,b,e,v,p;

g=b=O;

e = GetNewSzate(VoterErrors);

v = GetNewState(VoterEnable);

e=v&e; /, e will hold bit vector of BAD ENABLED processors */

v=v'e; /* If ENABLEd processors aren't BAD, they're GOOD _/

// Count errors and see if majority rules

for (p=O; p<=3; p++) {

if (e_(l<<p)) b++;

if (va(1<<p)) g+÷;

}
PutState(VoterState,SOOD);

if (b>O) PutState(VoterState,ERROR);

if ((b>=g)]{(g==O)) Voter_FailEffect();

} //Eval

Listing 5b. RML Model of Quad with Voter: Voter Module

66 CHAPTER 5. LISTINGS

//PMESS
void Pmess(msg,who)

int ,msg,who; {

int v;

switch (*meg) {

case FAIL:

case ERROR: if (!(GetNewStaze(VoterState)&FAIL))
for (v=O; v<4; v+*) SendValue(VSend[v],ERROR);

} //switch

} llPmess

/IVMESS

// Voter sends ERROR message when it's Processor fails

void Vmess(msg,who).

int ,meg,who; {

int t;
// The Voter ID's go from 1,2,4,8, but the indices go from 0..3

switch (*msg) {

case ERROR:
t = GetNewState(VoterErrors) l((1<<who)_

GetNewState(VoterEnable));

PutState(VoterErrors,t);

Voter.Eval();

} //switch

} /IVmess

IIFTPMESS

// FTF will reset enable register when it recovers

void FTPmess(msg,who)

int ,meg,who; {

int e;

PutState(VoterEnable,*msg);

// Disabled Channels are no longer Bad
• • GetState(VoterErrors);

• = e&(*msg);

PutState(goterErrors,e);

Voter_Eval();

} llFTPmess

}//CODE

}//Voter

Listing 5c. RML Model of Quad with Voter: Voter Module (contd)

67

MODULE FTP {

STATE FTPState,WorkingSet;

RATE FTPrec;

RELATION Voter V[4];

RELATION Processor P[4]: Pmess();

IF Vulnerable() TRANTO Recover() BY FAST FTPrec;

CODE {

//EVAL

void Eval() {

int g,b,p;

g=b=O;

// Poll Processors and Voters. FTP is OK as long as it has ANY good

processors

// If any voters have errors FTP will start recovery

for (psO; p<NumProcs; p++) {

if (GetNewState(P[p].ProcState)==GOOD) g++;
}

PutState(FTPStzte,GOOD);

if (g-=O) PutState(FTPState,FAIL);
} //Eval

//PMESS

// A processor has changed state so re-eval FTP

void Pmess(msg,who)

int *meg,who; {

FTP_EvaI();

}//Pmess

//VULNERABLE

int Vulnerable() {

int p,b;

b=O;

for (p=O; p<NumProcs; p++; {

if (((1<<p)_GetState(WorkingSet)) &_

(GetState(V[p].VoterState)==ERROR)) b++;

}

return(b>O);

}

Listing 5d. RML Model of Quad with Voter: FTP Module

(i8 CHAPTER 5. LISTINGS

//COUNTS

// There may be a better way of doing this

// This function accumulates error count for each processor

void Count(s,p,Ple,P2e,P3e,P4e)

in_ s,p,*Ple,*P2e,*P3e,*P4e; {

if (p&GetState(WorkingSet)) {

if (PIID&s) *Ple- *Ple+ I;

if (P2ID&s) *P2e - *P2e ÷ I;

if (P3ID&s) *P3e = *P3e + I;

if (P4IDas) *P4e = *P4e + I;

}

}//Counts

//RECOVER

void Recover() {

int e,s,Ple,P2e,P3e,P4e,v;

etPlefP2e=P3e=P4e=O;

// For each voter, count errors for each processor

for (v=O; v<NumProcs; v÷+)

if ((1<<v)_GetState(WorkingSet)) {

s = GetState(V[v].VoterErrors);

FTP_Count(s,(l<<v),&Ple,&P2e,_P3e,_P4e);

}

// If more than 2 voters agree that a Proc has errors, then we believe it

if (Ple>l) e = eiPlID;

if (P2e>l) e ffi elP2ID;

if (P3e>l) e = elP3ID;

if (P4e>l) • = eiP4ID;

// Remove Bad Procs from working set

• = GetState(WorkingSet)R(-e);

PurState(WorkingSet,e);

// Resez Voter enable latches

for (v=O; v<NumProcs; v++)

if (e) SendValue(V[v],e);

// Re-eval FTP

FTP_EvaI();

}//Recover

}//CODE

}FTP

Listing 5e. RML Model of Quad with Voter: FTP Module (contd)

MODULE System {

RELATION FTP FTP;

DEATHIF FTPFaiI();

CODE {

//FTPFAIL

in_ FTPFaiI() {

re_urn(GetState(FTP.FTPState)==FAIL);

}//FTPFail

}//CODE

}//System

69

STATIC {

#define GOOD I

#define FAIL 2

#define REMOVED 4

#define VULNERABLE 8

#define ERROR 16

#define PIID I

#define P2ID 2

#define P3ID 4

#define P4ID 8

'#define NumProcs 4

}

Listing 5£ RML Model of Quad with Voter: System Module and Static Section

70 CHAPTER 5. LISTINGS

GLOBAL {

Processor: P[4];

Voter: V[4];

FTP: FTP;

System: SYS;
}

INIT {

int i,j ;

for (iffiO;i<NumProcs; i++) {

Connect (FTP. V [i], V [i]. FTP) ;

Connect (V[i]. PME, P [i]. VME) ;

for (j=O; j<NumProcs; j÷+)

Connect (V [±3 .VSend [j], V [j] . VReceive [i]) ;

Connect (FTP. P [i], P [i]. FTP) ;

}

View(SYS.FTP,FTP);

for (i-O; i<NumProcs; i+÷) {

Set(P[i].ProcState,GOOD);

Set(V[i].VoterState,GOOD);

Set(V[i].VotsrErrors,O);

Set(V[i].VoterEnable,(PlIDIP2IDIP3IDIP4ID));

}

}

Set(FTP.FTPState,GOOD);

Set(FTP.WorkingSet,(PiIDIP2IDIP3IDIP4ID));

Rate(FTP.FTPrec,3600.O);

Rate(Processor.ProcFail,l.OE-4);

Listing 5g. RML Model of Quad with Voter: Initialization

7]

Comment ffi O;

"Echo = 0;"

"prune=1.0E-14;"

IFail = 1.0E-5;

Irec = 3600;

space = (Igood: array [1. .4] of 0..I, IO: array [1. .4] of 0..I,

IOError: array [1. .4] of 0..1);

Start = (4 of 1, 1, O, O, 1, 4 of 0);

deathif (IO [I] +IO [2] +IO [3]+IO [4] =0) ;

for i=1,4;

if (Igood[i]=1) and (IO[i]-l) tranto Igood[i3=O, IO[i]=O, IOError[i]=l by

IFail;

if (Igood[i]-1) and (IO[i]=O) tranto Igood[i]=O by IFail;

endfor;

if (IOError[1]--1) and

(Igood[2]=l) tranto IOError[1]=O, I012]--1 by FAST Irec;
if (lOError [l] =l) and

(Igood[2]-O) tranto IOError [1] -O by FAST Irec;

if (IDError [2]-1) tranto 10Error [23-O by FAST Irec;

if (IOError[3]=1) tranto IOError [33 =O by FAST Irec;

if (lOError [4] =l) and

(Igood[3]-1) tranto IOError[4]-O, I013]=I by FAST Irec;

if (IDError[4]ffil) and

(Igood[3]mO) tranto IOError [4] =O by FAST Irec;

Listing 6. ASSIST model of Interface

72 CHAPTER 5. LISTINGS

MODULE Interface {

STATE IntState;

RATE IntRate;

RELATION InterfaceManager IntMan: Manmess();

// Not use of '&' instead of ,=z, This is because an Interface can be either

// G00D or (G00DiINUSE). In either case it can fail. The difference is the

// effect of failing if INUSE or not. Also note that for this change the value
// of G00D is made 1 and other State values modified accordingly.

IF (GetState(IntState)&G00D) TRANTO FailEffect() BY IntRate;

CODE {

// FAILEFFECT

// When an Interface fails it produces errors

void FailEffect() {

int s;

// Have to retain INUSE bit

s - GetState(IntState);

PutState(IntState,((sR('GODD))mFAILIEPJ_0R));

SendValue(IntMan, FAIL);

}//FailEffect

//MANMESS

// The Interface's Redundancy Manager can place the In_erface Either

INUSE

// or not INUSE

void Manmess(msg,who)

int *msg,who; {

int s;

sffiGetState(IntState);

switch (*msg) {

case INUSE: PutState(IntState,slINUSE); break;

case KEMOVED: PutState(IntState,s_('IBqJSE)); break;

} //switch

}llMa.-.mess

}//CODE

}Interface

Listing 7a. RML Model of Interface: Interface Module

?.3

MODULE InterfaceManager {

STATE InzManSZaZe;

RATE IntManRec;

KELATION Interface I[4]: Imess();

IF (GetStaZe(IntManState) ==VULNERABLE) TRANTO

RecEffect() BY FAST IntManRec;

CODE {

//EVAL

// To evaluate Health of I/0 system, only consider active (INUSE) elements

void Eval() {

ins g,b,s,i;

g-b-O;
for (i=O; i<4; i++) {

s = GetNewS_a_e(I[i].IntSta_e);

if (s_INUSE)

if (s_ERROR)

b+÷;

else

g++;

}

PutState(IntManState,GOOD);

if (b>O) PutState(IntManState,VULNERABLE);

if (gffi=O)PuzState(IntManStase,FAIL);

} //Eval

// IMESS

// When an Interface changes state, The parent manager must reevaluate

void Imess(msg,who)

imt *msg,who; {

In_erfaceManager_Eval();

} //Imess

Listing 7b. RML Model of Interface: InterfaceManager Module

74 CHAPTER 5. LISTINGS

// RECEFFECT

// This recovery is pretty simple.

// Interfaces which are INUSE and have ERRORS are REMOVED.

// If I[03 fails, I[13 is activated and if I[3] fails, I[2] is activated

void RecEffect ()_

int s,i;

for (i=O; i<NumProcs; i÷÷)

s ffiGetState(I [i3 •IntState) ;

if ((s&INUSE)&_(s&ERROR))

$endValue (I [i3, REMOVED) ;

seitch (i) {

case O: if (GetNewState(I [I]. IntState)&GOOD)

SendValue(I [I] ,INUSE) ; break;

case 3: if (GetNewState(I [23 .IntState)RGOOD)

SendValue (I [23, INUSE) ; break;

> //switch

)l/if

>l/for

// Re-eval the Interface

InterfaceManager_Eval();

)/IRecEffect

)//CODE

} //InterfaceManager

Listing 7c. RML Model of Interface: InterfaceManager Module (contd)

MODULE System {

RELATION InterfaceManager IntMan;

DEATHIF INTFaiI();

CODE {

//INTFAIL

int INTFaiI() {

return(GetState(IntMan. IntManState)==FAIL);

}//INTFail

}//CODE

}//System

STATIC {

#define GOOD I

#define FAIL 2

#define REMOVED 4

#define VULNERABLE 8

#define ERROR 16

#define INUSE 32

#define PIID 1

#define P2ID 2

#define P3ID 4

#define P4ID 8

%define NttmProcs 4

}

75

Listing 7d. RML Model of Interface: System Module and Static Section

76 CHAPTER 5. LISTINGS

GLOBAL {

Interface: Int[4];

InterfaceManager: IntMan;

System: SYS;

}

INIT {

int i,j;

for (i-O; i<NumProcs; i++) {

Connect(IntMan.I[i], Int[i].IntMan);

}

View(SYS.IntMan,IntMan);

Set(Int[O].IntState,(GOODIINUSE));

Set(Int[l].IntState,GOOD);

Set(Int[2J.IntS%ate,GOOD);

Set(Int[3].IntS%ate,(GOODIINUSE));

Set(IntMan.IntManState,GOOD);

Kate(Interface. IntKate,l.OE-5);

Rate(InterfaceManager. IntManRec,3600.O);

}

Listing 7e. RML Model of Interface: Initialization

77

Comment = O;

"Echo = 0;"

"prune=l.0E-14;"

PFail = 1.0E-4;

Prec = 3600;

IFail = l.OE-5;

Irec = 3600;

Space = (Pgood :array[1..4] of 0..I, Pbad: array [Z..4] of 0..1,

Igood: array [I..4] of 0..1, IO: array [I..4] of 0..I,

IOError: array[1..43 of 0..1);

Start = (4 of I, 4 of O, 4 of I, i, O, O, I, 4 of 0);

deathif ((Pbad [13+Pbad [2] +Pbad [3] +Pbad [4])>=

(Pgood [I] +Pgood [23 +Pgood [3]÷Pgood [43)) ;

deathif (IO [13 +IO [2] +IO [3] +IO [4] =0) ;

for i=1,4;

if (Pgood [i]=l) and (Igood[i]=l) and (IO[i]=l) _ran_o

Pgood[i]=O, Pbad[i]=1, Igood[i]=O, IO[i]=O, IOError [i] =l by PFail;

if (Pgood[i]=1) and (Igood[i]=l) and (IO[i]ffiO) Cran_o

Pgood[i] =0, Pbad[i] =I, Igood [i]=0 by PFail ;

if (Pgood [i]=l) and (Igood[i]=O) and (IO[i]=O) tran¢o

Pgood[i]=O, Pbad[i]=l by PFail;

if (Pgood [i] =l) and (Igood [i] =O) and (IO[i]=l) cranto

Pgood[i]=O by PFail ;

if (Pbad[i]=l) Cranto Pbad[i]=O by FAST Prec;

if (Igood[i]=1) and (I0[i]=I) tranto Igood[i]=O, IO[i]=O, lOError[i]=1 by

IFail;

if (Igood[i]=1) and (lO[i]=O) tranto Igood[i]=O by IFail;

endfor;

if (IOError[l]=1) and (Igood [2]=l) tranto

IOError[1]=O, I012]=I by FAST Irec;

if (IOError [1] -1) and (Igood[2]=O) tran_o IOError [l] =O by FAST Irec;

if (IOError[2]ffil) _ran_o IOError [2] =O by FAST Irec;

if (IOError[S]=l) zranto IOError[3]=O by FAST free;

if (IOError[4]=1) and (Igood[3]=1) tranto

IOError[4]=O, I013]=I by FAST Irec;

if (IOError[4]=l) and (Igood[3]-O) tranto IOError[4]=O by FAST Irec;

Listing 8. ASSIST Module of Quad Processors plus Intefaces

78 CHAPTER 5. LISTINGS

NODULE Processor {

STATE ProcState;

EATE ProcFail;

// Relation with sibling voter

RELATION Voter VME: Vmess();

RELATION FTPmodule FTP;

RELATION Interface Int;

IF (GetState(ProcState)_GOOD) TRANTO FailEffect() BY ProcFail;

CODE {

//FAILEFFECT

void FailEffect() {

int p,v;
PutState(ProcState,FAIL);

SendValue(VME,ERROR);

II

II

Tell Parent FTP we've failed (Voter could do this as error report

But then all 4 voters would send message

SendValue(FTP,FAIL);

SendValue(Int,FAIL);

}//FailEffect

1/ VMESS

// When Voter Fails the sibling Processor Nodule also fails

void Vmess(msg,who)

int *msg, who; {

Processor_FailEffect();

} llVmess

}l/CODE

}//Processor

Listing 9a. R.ML Model of Quad Processors plus Interfaces: Processor Module

79

MODULE Voter {

STATE VoterS_ate,Vo_erErrors,VoterEnable;

// Relation with sibling processor

RELATION Processor PME: Pmess();

// Transmit Ports

RELATION Vo_er VSend[4];

// Receive Ports

RELATION Vo_er VReceive[4]: Vmess();

RELATION FTPmodule FTP: FTPmess();

CODE {

//FAILEFFECT

// When Voter Fails it notifies its sibling processor

void FailEffect() {

PutState(VoterState,FAIL);

SendValue(PME,FAIL);

}//FailEffect

IIEVAL

void Eval() {

int g,b,e,v,p;

g=b=O;

• = GezNewS_ate(VoterErrors);

v = GetNewState(VoterEnable);

e-v_e; /* e will hold bit vector of BAD ENABLED processors */

vfv'e; /* If ENABLEd processors aren't BAD, they're GOOD ,/

// Count errors and see if majority rules

for (psO; p<=3; p++) {

if (e&(1<<p)) b++;

if (v_Cl<<p)) g+*;
}

PuzState(VoterState,GOOD);

if (b>O) PutState(VoterState,ERROR);

if ((b>ffig)ll(g==O)) Voter_FailEffect();

}llEval

Listing 9b. RML Model of Quad Processors plus Interfaces: Voter Module

80 CHAPTER 5. LISTINGS

//PMESS

void Pmess(msg,who) {
int v;

if (!(GetNe.State(VoterSrate)&FAIL))

for (v=O; v<4; v+*) SendValue(VSend[v],ERROR);

} //Pmess

IIVMESS

/1 Voter sends ERROR message when it's Processor fails

void Vmess (msg,.ho)

inr *msg,.ho; {
int r ;

// The Voter ID's go from 1,2,4,8, but the indices go from 0..3

r =

GerNe.St at• (VoterErrors) [((1<<.ho) &GerNe.Sr ate (VorerEnable)) ;

PutSt are (Vot erErrors, t) ;

Voter_Eval () ;

}//Vmess

//FTPmess

// FTP will reset enable register when it recovers

void FTPmess(msg,.ho)

int *msg,who; {

int e;

PutSrate(VoterEnable.*msg);

// Disabled Channels are no longer Bad

• • GerState(VoterErrors);

e = e_(*msg);

PurState(VoterErrors,e);

Voter_Eval();

}//FTPmess

}//CODE

}llVotar

Listing 9c. RML Model of Quad Processors plus Interfaces: Voter (contd)

MODULE FTPmodule

STATE FTPState,WorkingSet;

RATE FTPrec;

RELATION Voter V[4_;

RELATION Processor P[43: Pmess();

IF Vulnerable() TRANT0 Recover() BY FAST FTPrec;

CODE

//EVAL

void Eval()

{

int g,b,p;

g=b=O;

II Poll Processors and Voters. FTP is OK as long as it has ANY good
processors

// If any voters have errors FTP .ill start recovery

for (pffiO;p<NumProcs; p÷÷)

if (GetNewState(P[p].ProcState)m=GOOD) g+÷;

PutState(FTPState,GOOD);

if (g==O) PutState(FTPState,FAIL);

} //Eval

I/PMESS

II A processor has changed state so re-eval FTP

void Pmess(msg,wbo)

int *msg,who;

FTPmodule_Eval();

}llPmess

//VULNERABLE

int Vulnerable()

int p,b;

b=O;

for (p=O; p<NumProcs; p++)

if (((1<<p)&GetState(WorkingSet)) &&

(GetState(V[p].VoterState)ffiffiERROR)) b+÷;

return(b>O);

}//Vulnerable

$I

Listing 9d. RML Model of Quad Processors plus Interfaces: FTP Module

82 CHAPTER 5. LISTINGS

I/COU_TS

// There may be a better way of doing this

1/ This function accumulates error count for each processor

void Count(s,p,Ple,P2e,P3e,P4e)

int s,p,*Ple,*P2e,*P3e,*P4e;(

if (p_GetState(WorkingSet))

if (PIID_s) *Ple• *Ple+ 1;

if (P2ID_s) *P2e • *P2e + I;

if (P3ID_s) *P3e • *P3e + 1;

if (P4ID_s) *P4e • *P4e + I;

}

}llCounzs

//RECOVER

void Recover()

in_ e,s,Ple,P2e,P3e,P4e,v;

ezPlesP2e=P3e=P4e•O;

// For each voter, count errors for each processor

for (v•O; v<NumProcs; v++) {

s = GetStare(VEv_.VoterErrors);

FTPmodule_Count(s,(1<<v),&Ple,&P2e,_P3e,EP4e);

>

II If more than 2 voters agree that a Proc has errors, then we believe it

if (Ple>l) e = elPIID;

if (P2e>l) e = eJP2ID;

if (P3e>1) • = elP3ID;

if (P4e>1) • ffielP4ID;

/1 Remove Bad Procs from working set

• = GetState(WorkingSet)_('e);

PutState(WorkingSet,e);
// Reset Voter enable latches

for (v•0; v<NumProcs; v++)
if (e) SendYalue(V[v3,e);

// Re-eval FTP

FTPmodule.Eval();

>llRecover

)//CODE

}lIFT?

Listing 9e. RML Model of Quad Processors plus Interfaces: FTP (contd)

83

MODULE Interface {

STATE IntState;

RATE IntRate;

RELATION Processor Proc: Pmess();

RELATION InterfaceManager IntMan: ManMess();

// Not use of '_' instead of '=ffi' This is because an Interface can be either

// GOOD or (GOODIINUSE). In either case it can fail. The difference is the

// effect of failing if INUSE or not. Also note that for this change %he value

// of GOOD is made 1 and other State values modified accordingly.

IF (GetState(In%S%ate)_GOOD) TRANTO FailEffect() BY IntBate;

CODE {

//FAILEFFECT

// When an Interface fails it produces errors

void FailEffect() {

in% s;

// Have to retain INUSE bit

s = GetNewSzate(IntState);

PutSzate(InZState,((sE('GOOD))IFAILIEKKOK));

Interface_effect();

}I/FailEffec%

Listing 9f. RML Model of Quad Processors plus Interfaces: Interface Module

84 CHAPTER 5. LISTINGS

ll_ess

// When a processor FAILS the interface produces errors

void Pmess(msg,who)

int .msg,who;

Interface_FailEffect();

>//Processor

IIHANMESS

// The Interface's Redundancy Manager can place the Interface Either

INUSE

// or not INUSE

void ManMess(msg,who)

int *msE,who;

int s;

s-GetState(IntState);

s.itch (*msg)

case INUSE: PutState(IntState,slINUSE); break;

case REMOVED: PutS_ate(In_State,s_('INUSE)); break;

>//s.itch

>

>

Listing 9g. RML Model of Quad Processors plus Interfaces: Interface (contd)

85

MODULE InterfaceManager {

STATE IntManState;

RATE IntManRec;

RELATION Interface I[4]: Imess();

IF (Ge%S%a%e(IntManSta%e)==VULNERABLE) TRANTO

RecEffect() BY FAST In%ManRec;

CODE {

/EVAL

// To evaluate Health of I/0 system, only consider active (INUSE) elements

// Notice that a simultaneous processor (e.E. P[O]) and interface (e.g. I[3])

// failure causes the Manager %o declare failure. This is similar to

// temporary exhaus%ion.
void Eval() {

int g,b,s,i;

gfb=O;
for (i=O; i<4; i++) {

s " GetNewState(I[i].In%State);

if (s_INUSE)

if (saERROR)

b+*;

else

g++;

}

PutState(In%ManState,GOOD);

if (b>O) PuzState(IntManState,VULNERABLE);

if (gffi=O)PuzState(IntManState,FAIL);

}/IEval

IIIMESS

// When an Interface changes state, The parent manager must reevaluate

void Imess(msg,who)

int *msg,who; {

In%erfaceManager_Eval();

}

Listing 9h. RML Model of Quad Processors plus Interfaces: InterfaceManager

(contd)

86 CHAPTER 5. LISTINGS

//RECEFFECT

// This recovery is pretty simple.

// Interfaces which are INUSE and have E_ROR are REMOVED.

// If I[O] fails, I[1] is activated and if I[33 fails, I[2]

void RecEffect() {

int s,i;

for (i=O; i<NumProcs; i÷+) {

s = GetState(l [i] •IntState) ;

if ((s&INUSE)_a(s&ERROR)) {

SendValue (I [i], REMOVED) ;

switch (i) {

case O: if (GetNewState(I [i] .IntState)_GOOD)

SendValue(I [I] ,INUSE) ; break;

(GetNewState (I[23 •IntState) RGOOD)

SendValue (I [23, INUSE) ; break;

case 3: if

}//switch

}II if

}//for

is activated

// Re-eval the Interface

InterfaceManager_Eval();

}//RecEffect

}//CODE

} //InrerfaceManager

Listing 9i. RML Model of Quad Processors plus Interfaces: InterfaceManager
(contd)

MODULE System {

RELATION FTPmodule FTP;

RELATION InterfaceManager IntMan;

DEATHIF FTPFaiI();

DEATHIF INTFaiI();

CODE {

//FTPFAIL

int FTPFaiI() {

return(GetState(FTP.FTPState)==FAIL);

}//FTPFail

//INTFAIL

int INTFaiI() {

return(Ge_State(IntMan. IntManState)©-FAIL);
}//INTFAIL

}//CODE

}//System

STATIC

{
#define GOOD 1

#define FAIL 2

#define REMOVED 4

#define VULNERABLE 8

#define ERROR 16

#define INUSE 32

#define PIID 1

#define P2ID 2

#define P3ID 4

#define P4ID 8

#define NumProcs 4

}

87

Listing 9j. RML Model of Quad Processors plus Interfaces: System Module and
Static Section

88 CHAPTER 5. LISTINGS

GLOBAL {

Processor: P [4] ;

Voter: V[4] ;

Interface: Int [4] ;

InterfaceManager : IntMan;

FTPmodule: FTP;

System: SYS;

}

INIT {

int i,j ;
for (i-O; i<NumProcs; i++) {

Connect (FTP. V [i] ,Y [i]. FT?) ;

Connect (P [i]. Int, Int [i]. Proc) ;

Connect (V [i]. PME, P Ill. VME) ;

for (j-O; j<NumProcs; j+÷)

Connect (V [i] .YSend [j] ,V [j] .VReceive [i]) ;

Connect (FTP. P [i] ,P [i]. FTP) ;

Connect (IntMan. I [i], Int [i]. IntMan) ;

}
View(SYS. FTP, FTP) ;

View(SYS. IntMan, IntMan) ;

for (i=O; i<NumProcs; i÷+) {

Set (P [i]. ProcState, GOOD) ;

Set (V [i]. VoterState, GOOD) ;

•YoterErrors, O) ;

•VozerEnable, (PIID IP2ID JP3ID lP4ID));

set(viii

Set(Viii
}

set (Int [0]

Set (Int [1]

Set (Int [2]

Set (Int [3]

.IntSCate,(GOODmINUSE));

.IntSta_e,GOOD);

.IntState,GOOD);

.IntS_a_e,(GOODIINUSE));

Set(IntMan.ln_ManState,GOOD);

Set(FTP.FTPS_ate,GOOD);

Set(FTP.WorkinESet,(PIIDIP2IDIP3IDNP4ID));

Kate(FTPmodule.FTPrec,3600.O);

Kate(Processor.ProcFai1,1.0E-4);

Rate(Interface. IntKate,l.0E-5);

Rate(InterfaceManager. IntManRec,3600.O);

}

Listing 9k. RML Model of Quad Processors plus Interfaces: Global and Initialization
Sections

Bibliography

[1] R. But.ler. An a.bstract language for specifying markov reliability models. IEEE Trans.

on Rdiability, R-35(5):595-601, December 1986.

[2] G. Kernighan. Optimal sequential pa.rtitions of graphs. Journal of the A CM, 18(1):34-40,
January 1971.

89

Form_orov,_
REPORT DOCUMENTATION PAGE _ No.o_o1_

Publio r*p(xtinli bwckmfar Ihb c_;eotion ol _ le _mGm..;m;to _,,,,w;-,; 1 hourI_W,.,q,.,.,--. :.-,,.#,u.,_,.ithe time kw ._-..;_.';+ ina_., ;.,..,._,:,q_ exi*ting (la_usouroe*,

0:the_ng m_dm_ 1he dala needed, and oompletlnlDwad m4m_ Ihe ooiieetlonel ir_omlloe. SemJomnmmlmr_MmJ_g this I:m_leneMinmle _' xnY other mPe_ _ th_
odeelk_ d letermm_ Im_ sug_ettene kx mdu_ INs bu_lan0IoW_ Hmdqua*tem 8ewlmm, _ _r k_kwmalkm_ _ _, 1215 J_ DN

Hl0h._j.;8uh 1204, ktinpon, VA 22202.430_ andtolheOit_edManallemlmt andSudget, PmRaduclkmPR_eel (0704-0188),Wmhin_,_ 20503.

1. AGENCY U6E ONLY (/._w _ 2. REPORT DATE $. REPORT -i-_ AND DA_ COVERED

,]tme 1992 Technical Memorandum

4. TITLE AND 8UBTITLE $. _iG NUMBERS

User's Guide to the Reliability Estimation System Testbad (REST) WU 505-64-10-07

s. AUTHOR(S)

David M. Nicol, Daniel L. Palumbo, and Adam Rifkin

7. PERFORMINGORGAN_ZA_ NAME(B)ANDADORE88(ES)

NASA Langley Research Center
Hampton, VA 23665-52255

o. SPONGORmO/ MONnORONGAOFJ¢_ NAm.(S)ANGA_ORERS(H)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFOK;G;;_G OR_kNIT.ATION

REPORT NUMBER

10. _i_G I MOta-_n_iG

AGENCY REPORT NUMBER

NASA TM-107596

11. SUPPLEMENTARY NOTEB

Nicol sad Itifldn: College of William sad M_ry, Williamsburg, Virginia.
Palumbo: Langlcy Rcsc,_rch Ccntcr, Hampton, Virginis.

12a. DISTRIBUTIONI AVAILABILITYSTATEMENT

Unclassified - Unlimited

Subject Category 38

12b. DiSTRIBUTiON CODE

13. ABSTRACT (Maxknum2OOword_)

The Reliability Estimation System Testbad is an X-window based reliability modeling tool that has been created to explore
the use of the Reliability Modeling Language (RML). RML has been defined to support several reliability analysis techniques

including modulartzation, graphical representation, Failure Mode Effects Simulation (FMES) and parallel processing. These
techniques are most useful in modeling large systems. Using moduladzation, an analyst can create reliability models for
individual system components. The modules can be tested separately and then combined to compute the total system
reliability. Because a one-to-one relationship can be established between system components and the reliability modules, a
graphical user Interface may be used to describe the system model. RML has been designed to permit message passing
between modules. This features enables reliability modeling based on a run time simulation of the system wide effects of a

component's failure modes. The use of failure modes effects simulation enhances the analyst's ability to correctly express
system behavior when using the modularization approach to reliability modeling. To alleviate the computation bottleneck
often found in large reliability models, REST has been designed to take advantage of parallel processing on hypercubo

processors,

14. SUBJECT TERId8

Reliability analysis, Failure modes effects, Analysis, Parallel processing

17. SECURITY C_TION

OFREPORT

Unclassified

NSN 7540-01-280-5500

lB. RECURITYCLASSlFICA'i-._I
OFTHISPAGE

Undessifled

OFAs,,rr.,,cr

16. NI_.R OF PAGE_

is. pRICEOOOE

Aft5
20. UMITA;K,m_ OF Aia_HACT

,-.,:..,: _,_ ;Be (Ray_24m)
pmml_ byANSI8_d.Z38-18

